A review of minimum quantity lubrication technique with nanofluids application in metal cutting operations

Minimum quantity lubrication (MQL) technique did not only serve as a better alternative to flood cooling during machining but enhance better surface finish, minimizes the cost, reduces the impact loads on the environment and health hazards on the operation personnel. However, the coolant or lubricat...

Full description

Bibliographic Details
Main Authors: Sharif, S., Sadiq, I. O., Yusof, N. M., Mohruni, A. S.
Format: Article
Published: Insight Society 2017
Subjects:
Description
Summary:Minimum quantity lubrication (MQL) technique did not only serve as a better alternative to flood cooling during machining but enhance better surface finish, minimizes the cost, reduces the impact loads on the environment and health hazards on the operation personnel. However, the coolant or lubrication media used in MQL technique posed certain restrictions especially at very high cutting speeds where the lubricating oil tends to evaporates as it strikes the already heated cutting tool at elevated temperature. Desire to compensate for the shortcomings of the lubricating media in the MQL technique led to the introduction of nanoparticles in the cutting fluids for use in the MQL lubrication process. Nanoparticles have much higher and stronger temperature-dependent thermal conductivity and enhanced heat transfer coefficient at very low particle concentration, which are key parameters for their enhanced performance in many of the machining applications. Optimizing the nanoparticles concentration leads to efficiency in most of their application. Their ball bearing effect lubrication at the cutting zone through formation of film layer which reduces friction between the contact surfaces thereby reducing cutting force, temperature and tool wear. It has been reported in various studies that nanoparticles introduction in cutting fluids led to excellent machining performance in reduction of cutting forces, reduced tool wear, reduced cutting temperature and improved surface finish of the work piece thereby increasing productivity and reduction of hazards to the health of personnel and the environment better than the pure or conventional MQL process. Thus, the application of various nanoparticles and its performances in metal cutting operations with respect to the cutting forces, surface finish, tool wear and temperature at the cutting zone are evaluated and highlighted.