Design and implementation of a private and public key crypto processor for next-generation it security applications
The growing problem of breaches in information security in recent years has created a demand for earnest efforts towards ensuring security in electronic systems. The successful deployment of these electronic systems for ecommerce, Internet banking, government online services, VPNs, mobile commerce,...
Principais autores: | , , |
---|---|
Formato: | Artigo |
Idioma: | English |
Publicado em: |
2006
|
Assuntos: | |
Acesso em linha: | http://eprints.utm.my/8069/1/8069.pdf |
_version_ | 1825910144656998400 |
---|---|
author | Hani, Mohamed Khalil Wen, Hau Yuan Paniandi, Arul |
author_facet | Hani, Mohamed Khalil Wen, Hau Yuan Paniandi, Arul |
author_sort | Hani, Mohamed Khalil |
collection | ePrints |
description | The growing problem of breaches in information security in recent years has created a demand for earnest efforts towards ensuring security in electronic systems. The successful deployment of these electronic systems for ecommerce, Internet banking, government online services, VPNs, mobile commerce, Public Key Infrastructure (PKI), etc., is dependent on the effectiveness of the security solutions. These security concerns are further compounded when resource-constrained environments and real-time speed requirements have to be considered in nextgeneration applications. Consequently, these IT security issues have been a subject of intensive research in areas of computing, networking and cryptography these last few years. This paper presents the design and implementation of a crypto processor, a special-purpose embedded system optimized for the execution of cryptographic algorithms in hardware. This cryptosystem can be used in wide range of electronic devices, which include PCs, PDAs, wireless handsets, smart cards, hardware security modules, network appliances, such as routers, gateways, firewalls, storage and web servers. The proposed crypto processor consists of a 32-bit RISC processor block and several IP cores that accelerates private and public key crypto computations, LZSS data compression, SHA-1 hashing, and wide-operand modular arithmetic computation. These dedicated crypto IP cores, which are implemented as coprocessors, permit high-speed execution of the compute-intensive operations in AES encryption, ECC and RSAbased digital signature, and other PKI-enabling functions. The proposed embedded system is designed using SoC technology, with hardware described in VHDL and the embedded software coded in C. The resulting cryptohardware is implemented into a single Altera Stratix FPGA microchip. The operating system frequency is set to 40 MHz. A demonstration application prototype in the form of a real-time secure e-document application has been developed to verify the functionality and validate the embedded system. |
first_indexed | 2024-03-05T18:12:39Z |
format | Article |
id | utm.eprints-8069 |
institution | Universiti Teknologi Malaysia - ePrints |
language | English |
last_indexed | 2024-03-05T18:12:39Z |
publishDate | 2006 |
record_format | dspace |
spelling | utm.eprints-80692010-06-02T01:51:15Z http://eprints.utm.my/8069/ Design and implementation of a private and public key crypto processor for next-generation it security applications Hani, Mohamed Khalil Wen, Hau Yuan Paniandi, Arul TK Electrical engineering. Electronics Nuclear engineering The growing problem of breaches in information security in recent years has created a demand for earnest efforts towards ensuring security in electronic systems. The successful deployment of these electronic systems for ecommerce, Internet banking, government online services, VPNs, mobile commerce, Public Key Infrastructure (PKI), etc., is dependent on the effectiveness of the security solutions. These security concerns are further compounded when resource-constrained environments and real-time speed requirements have to be considered in nextgeneration applications. Consequently, these IT security issues have been a subject of intensive research in areas of computing, networking and cryptography these last few years. This paper presents the design and implementation of a crypto processor, a special-purpose embedded system optimized for the execution of cryptographic algorithms in hardware. This cryptosystem can be used in wide range of electronic devices, which include PCs, PDAs, wireless handsets, smart cards, hardware security modules, network appliances, such as routers, gateways, firewalls, storage and web servers. The proposed crypto processor consists of a 32-bit RISC processor block and several IP cores that accelerates private and public key crypto computations, LZSS data compression, SHA-1 hashing, and wide-operand modular arithmetic computation. These dedicated crypto IP cores, which are implemented as coprocessors, permit high-speed execution of the compute-intensive operations in AES encryption, ECC and RSAbased digital signature, and other PKI-enabling functions. The proposed embedded system is designed using SoC technology, with hardware described in VHDL and the embedded software coded in C. The resulting cryptohardware is implemented into a single Altera Stratix FPGA microchip. The operating system frequency is set to 40 MHz. A demonstration application prototype in the form of a real-time secure e-document application has been developed to verify the functionality and validate the embedded system. 2006 Article PeerReviewed application/pdf en http://eprints.utm.my/8069/1/8069.pdf Hani, Mohamed Khalil and Wen, Hau Yuan and Paniandi, Arul (2006) Design and implementation of a private and public key crypto processor for next-generation it security applications. Malaysia Journal of Computer Science, 19 (1). pp. 29-45. ISSN 0127-9084 http://ejum.fsktm.um.edu.my |
spellingShingle | TK Electrical engineering. Electronics Nuclear engineering Hani, Mohamed Khalil Wen, Hau Yuan Paniandi, Arul Design and implementation of a private and public key crypto processor for next-generation it security applications |
title | Design and implementation of a private and public key crypto processor for next-generation it security applications |
title_full | Design and implementation of a private and public key crypto processor for next-generation it security applications |
title_fullStr | Design and implementation of a private and public key crypto processor for next-generation it security applications |
title_full_unstemmed | Design and implementation of a private and public key crypto processor for next-generation it security applications |
title_short | Design and implementation of a private and public key crypto processor for next-generation it security applications |
title_sort | design and implementation of a private and public key crypto processor for next generation it security applications |
topic | TK Electrical engineering. Electronics Nuclear engineering |
url | http://eprints.utm.my/8069/1/8069.pdf |
work_keys_str_mv | AT hanimohamedkhalil designandimplementationofaprivateandpublickeycryptoprocessorfornextgenerationitsecurityapplications AT wenhauyuan designandimplementationofaprivateandpublickeycryptoprocessorfornextgenerationitsecurityapplications AT paniandiarul designandimplementationofaprivateandpublickeycryptoprocessorfornextgenerationitsecurityapplications |