Titania-based photocatalysts functionalized on stainless steel and its photocatalytic antibacterial activity

Owing to the potential environmental applications, photocatalytic reactions occurring on the surface of photoirradiated titanium(IV) oxide (TiO2) have garnered a wide interest. One of the many usage of TiO2 as a photocatalyst is in inhibiting bacterial growth. TiO2 is generally coated onto the surfa...

Full description

Bibliographic Details
Main Authors: Parno, Irkham, Chandren, Sheela, Ismail, Kamarulafizam, Nur, Hadi
Format: Article
Language:English
Published: Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia 2017
Subjects:
Online Access:http://eprints.utm.my/80707/1/SheelaChandren2017_TitaniaBasedPhotocatalystsFunctionalizedonStainlessSteel.pdf
_version_ 1796863242525474816
author Parno, Irkham
Chandren, Sheela
Ismail, Kamarulafizam
Nur, Hadi
author_facet Parno, Irkham
Chandren, Sheela
Ismail, Kamarulafizam
Nur, Hadi
author_sort Parno, Irkham
collection ePrints
description Owing to the potential environmental applications, photocatalytic reactions occurring on the surface of photoirradiated titanium(IV) oxide (TiO2) have garnered a wide interest. One of the many usage of TiO2 as a photocatalyst is in inhibiting bacterial growth. TiO2 is generally coated onto the surface of a substrate material and the material’s photocatalytic antibacterial activity is then investigated. In the present study, TiO2-based photocatalysts were coated on the surface of stainless steels by using an automatic film applicator (AFA), which is able produce a uniform coating with controllable thickness and high resistivity. By using this method, it is also possible to directly use TiO2 powder, instead of using other TiO2 source that requires crystallization process afterwards. The TiO2 photocatalysts were firstly prepared by preparing the mixture of the coating process, which consisted of anatase TiO2 powder, polyvinyl alcohol as the binder, ammonium citrate tribasic as the stabilizer and distilled water, where different compositions of TiO2 were used. After the coating process by AFA, the samples then underwent heating process at 200 °C. The prepared photocatalysts were characterized by field emission scanning electron microscope (FESEM) equipped with energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared (FTIR) spectroscopy, ultra violet-visible (UV-Vis) spectroscopy and grazing incidence X-ray diffraction (GI-XRD). The FESEM images clearly showed agglomerated TiO2 particles on the surface of the stainless steel, while EDX results further confirmed the presence of TiO2. The photocatalytic antibacterial activity of the synthesized TiO2 photocatalysts on stainless steels were then tested out by using Escherichia Coli (E.Coli) in agar plates at 37 °C for 24 h.
first_indexed 2024-03-05T20:23:49Z
format Article
id utm.eprints-80707
institution Universiti Teknologi Malaysia - ePrints
language English
last_indexed 2024-03-05T20:23:49Z
publishDate 2017
publisher Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia
record_format dspace
spelling utm.eprints-807072019-06-27T06:20:30Z http://eprints.utm.my/80707/ Titania-based photocatalysts functionalized on stainless steel and its photocatalytic antibacterial activity Parno, Irkham Chandren, Sheela Ismail, Kamarulafizam Nur, Hadi QD Chemistry Owing to the potential environmental applications, photocatalytic reactions occurring on the surface of photoirradiated titanium(IV) oxide (TiO2) have garnered a wide interest. One of the many usage of TiO2 as a photocatalyst is in inhibiting bacterial growth. TiO2 is generally coated onto the surface of a substrate material and the material’s photocatalytic antibacterial activity is then investigated. In the present study, TiO2-based photocatalysts were coated on the surface of stainless steels by using an automatic film applicator (AFA), which is able produce a uniform coating with controllable thickness and high resistivity. By using this method, it is also possible to directly use TiO2 powder, instead of using other TiO2 source that requires crystallization process afterwards. The TiO2 photocatalysts were firstly prepared by preparing the mixture of the coating process, which consisted of anatase TiO2 powder, polyvinyl alcohol as the binder, ammonium citrate tribasic as the stabilizer and distilled water, where different compositions of TiO2 were used. After the coating process by AFA, the samples then underwent heating process at 200 °C. The prepared photocatalysts were characterized by field emission scanning electron microscope (FESEM) equipped with energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared (FTIR) spectroscopy, ultra violet-visible (UV-Vis) spectroscopy and grazing incidence X-ray diffraction (GI-XRD). The FESEM images clearly showed agglomerated TiO2 particles on the surface of the stainless steel, while EDX results further confirmed the presence of TiO2. The photocatalytic antibacterial activity of the synthesized TiO2 photocatalysts on stainless steels were then tested out by using Escherichia Coli (E.Coli) in agar plates at 37 °C for 24 h. Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia 2017 Article PeerReviewed application/pdf en http://eprints.utm.my/80707/1/SheelaChandren2017_TitaniaBasedPhotocatalystsFunctionalizedonStainlessSteel.pdf Parno, Irkham and Chandren, Sheela and Ismail, Kamarulafizam and Nur, Hadi (2017) Titania-based photocatalysts functionalized on stainless steel and its photocatalytic antibacterial activity. Malaysian Journal of Catalysis, 2 (2). pp. 67-72. ISSN 0128-2581 http://mjcat.utm.my/index.php/MalJCat/article/download/72/pdf
spellingShingle QD Chemistry
Parno, Irkham
Chandren, Sheela
Ismail, Kamarulafizam
Nur, Hadi
Titania-based photocatalysts functionalized on stainless steel and its photocatalytic antibacterial activity
title Titania-based photocatalysts functionalized on stainless steel and its photocatalytic antibacterial activity
title_full Titania-based photocatalysts functionalized on stainless steel and its photocatalytic antibacterial activity
title_fullStr Titania-based photocatalysts functionalized on stainless steel and its photocatalytic antibacterial activity
title_full_unstemmed Titania-based photocatalysts functionalized on stainless steel and its photocatalytic antibacterial activity
title_short Titania-based photocatalysts functionalized on stainless steel and its photocatalytic antibacterial activity
title_sort titania based photocatalysts functionalized on stainless steel and its photocatalytic antibacterial activity
topic QD Chemistry
url http://eprints.utm.my/80707/1/SheelaChandren2017_TitaniaBasedPhotocatalystsFunctionalizedonStainlessSteel.pdf
work_keys_str_mv AT parnoirkham titaniabasedphotocatalystsfunctionalizedonstainlesssteelanditsphotocatalyticantibacterialactivity
AT chandrensheela titaniabasedphotocatalystsfunctionalizedonstainlesssteelanditsphotocatalyticantibacterialactivity
AT ismailkamarulafizam titaniabasedphotocatalystsfunctionalizedonstainlesssteelanditsphotocatalyticantibacterialactivity
AT nurhadi titaniabasedphotocatalystsfunctionalizedonstainlesssteelanditsphotocatalyticantibacterialactivity