Heat and mass transfer of steady magnetohydrodynamics mixed convection of dusty fluid flow with chemical reaction past an exponentially stretching sheet

An analysis has been carried out to study a problem of the chemical reaction effects on magnetohydrodynamics (MHD) mixed convective boundary layer flow with a fluid-particle suspension due to an exponentially stretching sheet. The effects of magnetic field and mass transfer are taken into account fo...

Full description

Bibliographic Details
Main Authors: Izani, S. N. H., Ali, A.
Format: Article
Published: Penerbit UTM Press 2017
Subjects:
_version_ 1796863284523040768
author Izani, S. N. H.
Ali, A.
author_facet Izani, S. N. H.
Ali, A.
author_sort Izani, S. N. H.
collection ePrints
description An analysis has been carried out to study a problem of the chemical reaction effects on magnetohydrodynamics (MHD) mixed convective boundary layer flow with a fluid-particle suspension due to an exponentially stretching sheet. The effects of magnetic field and mass transfer are taken into account for the first time in the dusty fluid over the exponentially stretching sheet. The governing partial nonlinear differential equations corresponding to the momentum, energy and concentration are converted into a system of ordinary differential equations by using similarity transformations. The relevant dimensionless equations are then solved numerically using Runge-Kutta-Fehlberg fourth fifth order method (RKF45) with the help of Maple symbolic software. The influence of physical parameters on the velocity, temperature and concentration distributions for both phases were discussed numerically and presented in details through plotted graphs and tables. Also, the numerical values of skin friction coefficient, Nusselt and Sherwood number of the governing parameters are analyzed and discussed in details. The outcomes show that the reaction parameter affects the fluid flow whereas the magnetic field retards the fluid flow. A comparative study of the present results with the previous study provides an excellent agreement.
first_indexed 2024-03-05T20:24:26Z
format Article
id utm.eprints-80918
institution Universiti Teknologi Malaysia - ePrints
last_indexed 2024-03-05T20:24:26Z
publishDate 2017
publisher Penerbit UTM Press
record_format dspace
spelling utm.eprints-809182019-07-24T00:10:43Z http://eprints.utm.my/80918/ Heat and mass transfer of steady magnetohydrodynamics mixed convection of dusty fluid flow with chemical reaction past an exponentially stretching sheet Izani, S. N. H. Ali, A. QA Mathematics An analysis has been carried out to study a problem of the chemical reaction effects on magnetohydrodynamics (MHD) mixed convective boundary layer flow with a fluid-particle suspension due to an exponentially stretching sheet. The effects of magnetic field and mass transfer are taken into account for the first time in the dusty fluid over the exponentially stretching sheet. The governing partial nonlinear differential equations corresponding to the momentum, energy and concentration are converted into a system of ordinary differential equations by using similarity transformations. The relevant dimensionless equations are then solved numerically using Runge-Kutta-Fehlberg fourth fifth order method (RKF45) with the help of Maple symbolic software. The influence of physical parameters on the velocity, temperature and concentration distributions for both phases were discussed numerically and presented in details through plotted graphs and tables. Also, the numerical values of skin friction coefficient, Nusselt and Sherwood number of the governing parameters are analyzed and discussed in details. The outcomes show that the reaction parameter affects the fluid flow whereas the magnetic field retards the fluid flow. A comparative study of the present results with the previous study provides an excellent agreement. Penerbit UTM Press 2017 Article PeerReviewed Izani, S. N. H. and Ali, A. (2017) Heat and mass transfer of steady magnetohydrodynamics mixed convection of dusty fluid flow with chemical reaction past an exponentially stretching sheet. Malaysian Journal of Fundamental and Applied Sciences, 13 (2). ISSN 2289-5981 http://dx.doi.org/10.11113/mjfas.v13n2.606 DOI:10.11113/mjfas.v13n2.606
spellingShingle QA Mathematics
Izani, S. N. H.
Ali, A.
Heat and mass transfer of steady magnetohydrodynamics mixed convection of dusty fluid flow with chemical reaction past an exponentially stretching sheet
title Heat and mass transfer of steady magnetohydrodynamics mixed convection of dusty fluid flow with chemical reaction past an exponentially stretching sheet
title_full Heat and mass transfer of steady magnetohydrodynamics mixed convection of dusty fluid flow with chemical reaction past an exponentially stretching sheet
title_fullStr Heat and mass transfer of steady magnetohydrodynamics mixed convection of dusty fluid flow with chemical reaction past an exponentially stretching sheet
title_full_unstemmed Heat and mass transfer of steady magnetohydrodynamics mixed convection of dusty fluid flow with chemical reaction past an exponentially stretching sheet
title_short Heat and mass transfer of steady magnetohydrodynamics mixed convection of dusty fluid flow with chemical reaction past an exponentially stretching sheet
title_sort heat and mass transfer of steady magnetohydrodynamics mixed convection of dusty fluid flow with chemical reaction past an exponentially stretching sheet
topic QA Mathematics
work_keys_str_mv AT izanisnh heatandmasstransferofsteadymagnetohydrodynamicsmixedconvectionofdustyfluidflowwithchemicalreactionpastanexponentiallystretchingsheet
AT alia heatandmasstransferofsteadymagnetohydrodynamicsmixedconvectionofdustyfluidflowwithchemicalreactionpastanexponentiallystretchingsheet