Utilization of stacked neural network for pore size prediction of asymmetric membrane

This study, investigates the possibility of applying stacked artificial neural network (ANN) as an alternative method to estimate the pore size of the asymmetric hollow fiber membranes. ANN, a connectionist-based (black box) model, consists of layers of nodes with nonlinear basis functions and weigh...

Disgrifiad llawn

Manylion Llyfryddiaeth
Prif Awduron: Mohd. Yusof, Khairiyah, Idris, Ani
Fformat: Erthygl
Iaith:English
Cyhoeddwyd: Penerbit UTM Press 2008
Pynciau:
Mynediad Ar-lein:http://eprints.utm.my/8723/1/UTMjurnalTEK_49F_DIS%5B25%5D.pdf
_version_ 1825910242748137472
author Mohd. Yusof, Khairiyah
Idris, Ani
author_facet Mohd. Yusof, Khairiyah
Idris, Ani
author_sort Mohd. Yusof, Khairiyah
collection ePrints
description This study, investigates the possibility of applying stacked artificial neural network (ANN) as an alternative method to estimate the pore size of the asymmetric hollow fiber membranes. ANN, a connectionist-based (black box) model, consists of layers of nodes with nonlinear basis functions and weighted connections that link the nodes. Using the nodes and weights, the inputs are mapped to the outputs after being trained with a set of training data. The input data needed for training the ANN model, the solute rejection and the permeation rate, are obtained from permeation experiments. Since the number of experimental data points needed for training the ANN model is limited, stacked neural network is utilized instead of the more common and simple feedforward ANN. With the development of this ANN model, the procedure to estimate membrane pore size was found to be easier and faster with a testing error of less than 2% compared to the experimental data.
first_indexed 2024-03-05T18:14:10Z
format Article
id utm.eprints-8723
institution Universiti Teknologi Malaysia - ePrints
language English
last_indexed 2024-03-05T18:14:10Z
publishDate 2008
publisher Penerbit UTM Press
record_format dspace
spelling utm.eprints-87232010-10-25T04:09:17Z http://eprints.utm.my/8723/ Utilization of stacked neural network for pore size prediction of asymmetric membrane Mohd. Yusof, Khairiyah Idris, Ani TP Chemical technology This study, investigates the possibility of applying stacked artificial neural network (ANN) as an alternative method to estimate the pore size of the asymmetric hollow fiber membranes. ANN, a connectionist-based (black box) model, consists of layers of nodes with nonlinear basis functions and weighted connections that link the nodes. Using the nodes and weights, the inputs are mapped to the outputs after being trained with a set of training data. The input data needed for training the ANN model, the solute rejection and the permeation rate, are obtained from permeation experiments. Since the number of experimental data points needed for training the ANN model is limited, stacked neural network is utilized instead of the more common and simple feedforward ANN. With the development of this ANN model, the procedure to estimate membrane pore size was found to be easier and faster with a testing error of less than 2% compared to the experimental data. Penerbit UTM Press 2008-12 Article PeerReviewed application/pdf en http://eprints.utm.my/8723/1/UTMjurnalTEK_49F_DIS%5B25%5D.pdf Mohd. Yusof, Khairiyah and Idris, Ani (2008) Utilization of stacked neural network for pore size prediction of asymmetric membrane. Jurnal Teknologi (49F). pp. 251-260. ISSN 0127-9696
spellingShingle TP Chemical technology
Mohd. Yusof, Khairiyah
Idris, Ani
Utilization of stacked neural network for pore size prediction of asymmetric membrane
title Utilization of stacked neural network for pore size prediction of asymmetric membrane
title_full Utilization of stacked neural network for pore size prediction of asymmetric membrane
title_fullStr Utilization of stacked neural network for pore size prediction of asymmetric membrane
title_full_unstemmed Utilization of stacked neural network for pore size prediction of asymmetric membrane
title_short Utilization of stacked neural network for pore size prediction of asymmetric membrane
title_sort utilization of stacked neural network for pore size prediction of asymmetric membrane
topic TP Chemical technology
url http://eprints.utm.my/8723/1/UTMjurnalTEK_49F_DIS%5B25%5D.pdf
work_keys_str_mv AT mohdyusofkhairiyah utilizationofstackedneuralnetworkforporesizepredictionofasymmetricmembrane
AT idrisani utilizationofstackedneuralnetworkforporesizepredictionofasymmetricmembrane