Summary: | In this study, the effects of two fuel types, i.e., hydrogen and methane on the electrochemical performance of the co-extruded triple layer hollow fiber, were systemically studied. The triple layer hollow fiber consisted of electrolyte/active functional layer (AFL)/anode was fabricated by single-step phase-inversion-based co-extrusion technique prior to the sintering process at temperature range of 1400 to 1500 °C. The hollow fibers were characterized by three-point bending test, gas tightness test, and scanning electron microscope (SEM). The electrochemical performance test was carried out at temperatures of 700–800 °C by flowing fuel at 20 ml/min. Based on the results attained, the gas tightness and bending test are improved by the increase of sintering temperature. SEM results show that the finger-like morphology length around 100 μm is obtained. In addition, the AFL layer located in the middle layer of the hollow fiber has its own finger like which forms sandwich-like structure with the anode layer. The open circuit voltage is recorded at 1.05 V with the highest power density obtained at 0.6 W cm−2 by using hydrogen. By changing the fuel into methane gas, the highest power density is achieved at 0.8 W cm−2. This is due to the methane that carries more hydrogen molecule. This indicates that the methane fuel can be utilized in hollow fiber SOFC systems.
|