MHD squeezing flow of casson nanofluid with chemical reaction, thermal radiation and heat generation/absorption
The heat and mass transfer characteristics on unsteady squeezing flow of magnetohydrodynamic (MHD) Casson nanofluid with chemical reaction, thermal radiation and heat generation/absorption effects is investigated in this study. The influences of viscous and joule dissipation are also examined. The f...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Penerbit Akademia Baru
2020
|
Subjects: | |
Online Access: | http://eprints.utm.my/91488/1/NurAzlinaMat2020_MHDSqueezingFlowofCassonNanofluid.pdf |
_version_ | 1796865237311291392 |
---|---|
author | Mat Noor, Nur Azlina Shafie, Sharidan Admon, Mohd. Ariff |
author_facet | Mat Noor, Nur Azlina Shafie, Sharidan Admon, Mohd. Ariff |
author_sort | Mat Noor, Nur Azlina |
collection | ePrints |
description | The heat and mass transfer characteristics on unsteady squeezing flow of magnetohydrodynamic (MHD) Casson nanofluid with chemical reaction, thermal radiation and heat generation/absorption effects is investigated in this study. The influences of viscous and joule dissipation are also examined. The flow is caused by squeezing between two parallel plates embedded in a porous medium. The highly coupled nonlinear partial differential equations are reduced to a system of nonlinear ordinary differential equations via similarity transformations. The transformed equations are solved using numerical scheme of Keller-box method. The accuracy of present method is validated through comparison of skin friction coefficient, Nusselt and Sherwood numbers with previously published results. Comparisons reveal that good agreements are achieved. Graphical results for velocity, temperature and nanoparticles concentration are analysed with various parameters. Findings demonstrate that the fluid velocity and temperature enhance when the plates move closer. Besides, increase in Hartmann number suppressed the fluid velocity and concentration due to the presence of strong Lorentz forces. The Brownian motion boosts the fluid temperature and concentration. Moreover, nanoparticles concentration is found to be higher in constructive chemical reaction and opposite effect is observed in destructive chemical reaction. |
first_indexed | 2024-03-05T20:53:54Z |
format | Article |
id | utm.eprints-91488 |
institution | Universiti Teknologi Malaysia - ePrints |
language | English |
last_indexed | 2024-03-05T20:53:54Z |
publishDate | 2020 |
publisher | Penerbit Akademia Baru |
record_format | dspace |
spelling | utm.eprints-914882021-06-30T12:17:15Z http://eprints.utm.my/91488/ MHD squeezing flow of casson nanofluid with chemical reaction, thermal radiation and heat generation/absorption Mat Noor, Nur Azlina Shafie, Sharidan Admon, Mohd. Ariff QA Mathematics The heat and mass transfer characteristics on unsteady squeezing flow of magnetohydrodynamic (MHD) Casson nanofluid with chemical reaction, thermal radiation and heat generation/absorption effects is investigated in this study. The influences of viscous and joule dissipation are also examined. The flow is caused by squeezing between two parallel plates embedded in a porous medium. The highly coupled nonlinear partial differential equations are reduced to a system of nonlinear ordinary differential equations via similarity transformations. The transformed equations are solved using numerical scheme of Keller-box method. The accuracy of present method is validated through comparison of skin friction coefficient, Nusselt and Sherwood numbers with previously published results. Comparisons reveal that good agreements are achieved. Graphical results for velocity, temperature and nanoparticles concentration are analysed with various parameters. Findings demonstrate that the fluid velocity and temperature enhance when the plates move closer. Besides, increase in Hartmann number suppressed the fluid velocity and concentration due to the presence of strong Lorentz forces. The Brownian motion boosts the fluid temperature and concentration. Moreover, nanoparticles concentration is found to be higher in constructive chemical reaction and opposite effect is observed in destructive chemical reaction. Penerbit Akademia Baru 2020-03 Article PeerReviewed application/pdf en http://eprints.utm.my/91488/1/NurAzlinaMat2020_MHDSqueezingFlowofCassonNanofluid.pdf Mat Noor, Nur Azlina and Shafie, Sharidan and Admon, Mohd. Ariff (2020) MHD squeezing flow of casson nanofluid with chemical reaction, thermal radiation and heat generation/absorption. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 68 (2). pp. 94-111. ISSN 2289-7879 http://dx.doi.org/10.37934/ARFMTS.68.2.94111 DOI:10.37934/ARFMTS.68.2.94111 |
spellingShingle | QA Mathematics Mat Noor, Nur Azlina Shafie, Sharidan Admon, Mohd. Ariff MHD squeezing flow of casson nanofluid with chemical reaction, thermal radiation and heat generation/absorption |
title | MHD squeezing flow of casson nanofluid with chemical reaction, thermal radiation and heat generation/absorption |
title_full | MHD squeezing flow of casson nanofluid with chemical reaction, thermal radiation and heat generation/absorption |
title_fullStr | MHD squeezing flow of casson nanofluid with chemical reaction, thermal radiation and heat generation/absorption |
title_full_unstemmed | MHD squeezing flow of casson nanofluid with chemical reaction, thermal radiation and heat generation/absorption |
title_short | MHD squeezing flow of casson nanofluid with chemical reaction, thermal radiation and heat generation/absorption |
title_sort | mhd squeezing flow of casson nanofluid with chemical reaction thermal radiation and heat generation absorption |
topic | QA Mathematics |
url | http://eprints.utm.my/91488/1/NurAzlinaMat2020_MHDSqueezingFlowofCassonNanofluid.pdf |
work_keys_str_mv | AT matnoornurazlina mhdsqueezingflowofcassonnanofluidwithchemicalreactionthermalradiationandheatgenerationabsorption AT shafiesharidan mhdsqueezingflowofcassonnanofluidwithchemicalreactionthermalradiationandheatgenerationabsorption AT admonmohdariff mhdsqueezingflowofcassonnanofluidwithchemicalreactionthermalradiationandheatgenerationabsorption |