Covid-19 severity classification using supervised learning approach

This paper presented work on supervised machine learning techniques using K-NN, Linear SVM, Naïve Bayes, Decision Tree (J48), Ada Boost, Bagging and Stacking for the purpose to classify the severity group of covid-19 symptoms. The data was obtained from Kaggle dataset, which was obtained through a s...

Full description

Bibliographic Details
Main Authors: Mohamand Noor, Nurul Fathia, Sipail, Herold Sylvestro, Ahmad, Norulhusna, Mohd. Noor, Norliza
Format: Conference or Workshop Item
Published: 2021
Subjects:
Description
Summary:This paper presented work on supervised machine learning techniques using K-NN, Linear SVM, Naïve Bayes, Decision Tree (J48), Ada Boost, Bagging and Stacking for the purpose to classify the severity group of covid-19 symptoms. The data was obtained from Kaggle dataset, which was obtained through a survey collected from the participant with varying gender and age that had visited 10 or more countries including China, France, Germany Iran, Italy, Republic of Korean, Spain, UAE, other European Countries (Other-EUR) and Others. The survey is Covid-19 symptom based on guidelines given by the World Health Organization (WHO) and the Ministry of Health and Family Welfare, India which then classified into 4 different levels of severity, Mild, Moderate, Severe, and None. The results from the seven classifiers used in this study showed very low classification results.