Multilocal feature selection using genetic algorithm for face identification

Face recognition is a biometric authentication method that has become more significant and relevant in recent years. It is becoming a more mature technology that has been employed in many large scale systems such as Visa Information System, surveillance access control and multimedia search engine. G...

Full description

Bibliographic Details
Main Author: Mohamad, Dzulkifli
Format: Article
Language:English
Published: Faculty of Computer Science and Information System 2008
Subjects:
Online Access:http://eprints.utm.my/9953/1/DzulkifliMohamad2008_MultilocalFeatureSelectionUsingGenetic.pdf
Description
Summary:Face recognition is a biometric authentication method that has become more significant and relevant in recent years. It is becoming a more mature technology that has been employed in many large scale systems such as Visa Information System, surveillance access control and multimedia search engine. Generally, there are three categories of approaches for recognition, namely global facial feature, local facial feature and hybrid feature. Although the global facial-based feature approach is the most researched area, this approach is still plagued with many difficulties and drawbacks due to factors such as face orientation, illumination, and the presence of foreign objects. This paper presents an improved offline face recognition algorithm based on a multi-local feature selection approach for grayscale images. The approach taken in this work consists of five stages, namely face detection, facial feature (eyes, nose and mouth) extraction, moment generation, facial feature classification and face identification. Subsequently, these stages were applied to 3065 images from three distinct facial databases, namely ORL, Yale and AR. The experimental results obtained have shown that recognition rates of more than 89% have been achieved as compared to other global-based features and local facial-based feature approaches. The results also revealed that the technique is robust and invariant to translation, orientation, and scaling