Effect of nonlinear resource allocation on AIRS classifier accuracy

Artificial Immune Recognition System (AIRS) is most popular immune inspired classifier.It also has shown itself to be a competitive classifier.AIRS uses linear method to allocate resources.In this paper, two different nonlinear resource allocation methods apply to AIRS. Then new algorithms are t...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Golzari, Shahram, Doraisamy, Shyamala, Sulaiman, Md Nasir, Udzir, Nur Izura
Μορφή: Conference or Workshop Item
Γλώσσα:English
Έκδοση: 2008
Θέματα:
Διαθέσιμο Online:https://repo.uum.edu.my/id/eprint/11422/1/596-600-CR162.pdf
Περιγραφή
Περίληψη:Artificial Immune Recognition System (AIRS) is most popular immune inspired classifier.It also has shown itself to be a competitive classifier.AIRS uses linear method to allocate resources.In this paper, two different nonlinear resource allocation methods apply to AIRS. Then new algorithms are tested on 8 benchmark datasets.Based on the results of experiments, one of them increases the accuracy of AIRS in the majority of cases.