Forecasting on House Price Index using Artificial Neural Network
Forecasting the residential property sector is a crucial component in the decision-making process for investors and government in supporting asset allocation, developing property finance plans and implementing a relevant policy. The purpose of this study is to examine the determinants of Penang hous...
Huvudupphovsmän: | Gobalkrishnan, Gangaieisvari, Md Yusof, Zahayu |
---|---|
Materialtyp: | Artikel |
Språk: | English |
Publicerad: |
Universiti Pendidikan Sultan Idris
2023
|
Ämnen: | |
Länkar: | https://repo.uum.edu.my/id/eprint/30937/1/JCIT%2013%2002%202023%2044-60.pdf https://doi.org/10.37134/jcit.vol13.2.5.2023 |
Liknande verk
Liknande verk
-
Forecasting Natural Rubber Price in Malaysia by 2030
av: Mohamad Norizan, Nor Farah Hanim, et al.
Publicerad: (2021) -
Comparison of Double Exponential Smoothing for Holt’s Method and Artificial Neural Network in Forecasting the Malaysian Banking Stock Markets
av: Zaini, Bahtiar Jamili, et al.
Publicerad: (2020) -
Housing loan evaluation system using artificial neural network
av: Azmi Raif Nur, Abd Wahab
Publicerad: (2011) -
The Use of Artificial Neural Network for Forecasting of FTSE Bursa Malaysia KLCI Stock Price Index
av: Ardiansyah, Soleh, et al.
Publicerad: (2013) -
Time Series Analysis and Forecasting Techniques for Foreign Direct Investment
av: Abdul Rahim, Ummi Rohaizad, et al.
Publicerad: (2020)