Showing 1 - 10 results of 10 for search '"SOAS"', query time: 0.07s Refine Results
  1. 1

    Quantification of primary and secondary organic aerosol sources by combined factor analysis of extractive electrospray ionisation and aerosol mass spectrometer measurements (EESI-T... by Y. Tong, Y. Tong, L. Qi, G. Stefenelli, D. S. Wang, F. Canonaco, U. Baltensperger, A. S. H. Prévôt, J. G. Slowik

    Published 2022-12-01
    “…For example, aerosol mass spectrometer (AMS) provides quantitative measurements of the total SOA fraction but lacks the chemical resolution to resolve most SOA sources. …”
    Get full text
    Article
  2. 2
  3. 3

    CCN activity and volatility of β-caryophyllene secondary organic aerosol by M. Frosch, M. Bilde, A. Nenes, A. P. Praplan, Z. Jurányi, J. Dommen, M. Gysel, E. Weingartner, U. Baltensperger

    Published 2013-02-01
    “…SOA from these experiments was less CCN active than SOA produced in experiments without an OH scavenger (i.e. where OH was produced during ozonolysis). …”
    Get full text
    Article
  4. 4

    Volatility of aerosol particles from NO<sub>3</sub> oxidation of various biogenic organic precursors by E. L. Graham, C. Wu, C. Wu, D. M. Bell, A. Bertrand, S. L. Haslett, U. Baltensperger, I. El Haddad, R. Krejci, I. Riipinen, C. Mohr, C. Mohr

    Published 2023-07-01
    “…<p>Secondary organic aerosol (SOA) is formed through the oxidation of volatile organic compounds (VOCs), which can be of both natural and anthropogenic origin. …”
    Get full text
    Article
  5. 5

    The link between organic aerosol mass loading and degree of oxygenation: an α-pinene photooxidation study by L. Pfaffenberger, P. Barmet, J. G. Slowik, A. P. Praplan, J. Dommen, A. S. H. Prévôt, U. Baltensperger

    Published 2013-07-01
    “…Significant correlation between measured secondary organic aerosol (SOA) and reference LV-OOA mass spectra is shown by Pearson's <i>R</i><sup>2</sup> values larger than 0.90 for experiments with low organic mass concentrations between 1.2 and 18 &mu;g m<sup>&minus;3</sup> at an OH exposure of 4 × 10<sup>7</sup> cm<sup>−3</sup> h, corresponding to about two days of oxidation time in the atmosphere, based on a global mean OH concentration of ~ 1 × 10<sup>6</sup> cm<sup>−3</sup>. α-Pinene SOA is more oxygenated at low organic mass loadings. …”
    Get full text
    Article
  6. 6

    Development of a sensitive long path absorption photometer to quantify peroxides in aerosol particles (Peroxide-LOPAP) by P. Mertes, L. Pfaffenberger, J. Dommen, M. Kalberer, U. Baltensperger

    Published 2012-10-01
    “…&lt;br&gt;&lt;br&gt; The time trends of the peroxide content in secondary organic aerosol (SOA) from the ozonolysis and photo-oxidation of &amp;alpha;-pinene in smog chamber experiments were measured. …”
    Get full text
    Article
  7. 7

    Aerosol modelling in Europe with a focus on Switzerland during summer and winter episodes by S. Aksoyoglu, J. Keller, I. Barmpadimos, D. Oderbolz, V. A. Lanz, A. S. H. Prévôt, U. Baltensperger

    Published 2011-07-01
    “…The main contributors to the modelled SOA concentrations were oxidation products of monoterpenes and sesquiterpenes as well as oligomerization of oxidized compounds. …”
    Get full text
    Article
  8. 8

    Inter-comparison of laboratory smog chamber and flow reactor systems on organic aerosol yield and composition by E. A. Bruns, I. El Haddad, A. Keller, F. Klein, N. K. Kumar, S. M. Pieber, J. C. Corbin, J. G. Slowik, W. H. Brune, U. Baltensperger, A. S. H. Prévôt

    Published 2015-06-01
    “…More comprehensive coverage of the potential particle size range is needed in future SOA measurements to improve our understanding of the differences in yields when comparing the MSC to the SC. …”
    Get full text
    Article
  9. 9

    Nighttime NO emissions strongly suppress chlorine and nitrate radical formation during the winter in Delhi by S. L. Haslett, S. L. Haslett, D. M. Bell, V. Kumar, V. Kumar, J. G. Slowik, D. S. Wang, S. Mishra, N. Rastogi, A. Singh, A. Singh, D. Ganguly, J. Thornton, F. Zheng, Y. Li, W. Nie, Y. Liu, W. Ma, C. Yan, M. Kulmala, M. Kulmala, M. Kulmala, K. R. Daellenbach, D. Hadden, D. Hadden, U. Baltensperger, A. S. H. Prevot, S. N. Tripathi, S. N. Tripathi, C. Mohr, C. Mohr, C. Mohr

    Published 2023-08-01
    “…<p>Atmospheric pollution in urban regions is highly influenced by oxidants due to their important role in the formation of secondary organic aerosol (SOA) and smog. These include the nitrate radical (NO<span class="inline-formula"><sub>3</sub></span>), which is typically considered a nighttime oxidant, and the chlorine radical (Cl), an extremely potent oxidant that can be released in the morning in chloride-rich environments as a result of nocturnal build-up of nitryl chloride (ClNO<span class="inline-formula"><sub>2</sub></span>). …”
    Get full text
    Article
  10. 10

    An intercomparison study of four different techniques for measuring the chemical composition of nanoparticles by L. Caudillo, M. Surdu, B. Lopez, M. Wang, M. Wang, M. Thoma, S. Bräkling, A. Buchholz, M. Simon, A. C. Wagner, T. Müller, T. Müller, M. Granzin, M. Heinritzi, A. Amorim, D. M. Bell, Z. Brasseur, L. Dada, J. Duplissy, J. Duplissy, H. Finkenzeller, X.-C. He, H. Lamkaddam, N. G. A. Mahfouz, V. Makhmutov, V. Makhmutov, H. E. Manninen, G. Marie, R. Marten, R. L. Mauldin, R. L. Mauldin, B. Mentler, A. Onnela, T. Petäjä, J. Pfeifer, J. Pfeifer, M. Philippov, A. A. Piedehierro, B. Rörup, W. Scholz, J. Shen, D. Stolzenburg, C. Tauber, P. Tian, A. Tomé, N. S. Umo, D. S. Wang, Y. Wang, S. K. Weber, S. K. Weber, A. Welti, M. Zauner-Wieczorek, U. Baltensperger, R. C. Flagan, A. Hansel, A. Hansel, J. Kirkby, J. Kirkby, M. Kulmala, M. Kulmala, M. Kulmala, K. Lehtipalo, K. Lehtipalo, D. R. Worsnop, D. R. Worsnop, I. E. Haddad, N. M. Donahue, A. L. Vogel, A. Kürten, J. Curtius

    Published 2023-06-01
    “…Here we report on the chemical composition of secondary organic aerosol (SOA) nanoparticles from experimental studies of <span class="inline-formula"><i>α</i></span>-pinene ozonolysis at <span class="inline-formula">−</span>50, <span class="inline-formula">−</span>30, and <span class="inline-formula">−</span>10 <span class="inline-formula"><sup>∘</sup></span>C and intercompare the results measured by different techniques. …”
    Get full text
    Article