-
1
On dimension reduction in Gaussian filters
Publié 2016“…A priori dimension reduction is a widely adopted technique for reducing the computational complexity of stationary inverse problems. …”
Accéder au texte intégral
Accéder au texte intégral
Accéder au texte intégral
Accéder au texte intégral
Article -
2
-
3
Dimension reduction in recurrent networks by canonicalization
Publié 2022“…The classical notion of canonical state-space realization is adapted in this paper to accommodate semi-infinite inputs so that it can be used as a dimension reduction tool in the recurrent networks setup. …”
Accéder au texte intégral
Journal Article -
4
Multifidelity Dimension Reduction via Active Subspaces
Publié 2021“…We propose a multifidelity dimension reduction method to identify a low-dimensional structure present in many engineering models. …”
Accéder au texte intégral
Article -
5
-
6
-
7
Likelihood-informed dimension reduction for nonlinear inverse problems
Publié 2015“…From a Bayesian perspective, changes from the prior to the posterior may, in many problems, be confined to a relatively low-dimensional subspace of the parameter space. We present a dimension reduction approach that defines and identifies such a subspace, called the 'likelihood-informed subspace' (LIS), by characterizing the relative influences of the prior and the likelihood over the support of the posterior distribution. …”
Accéder au texte intégral
Accéder au texte intégral
Accéder au texte intégral
Accéder au texte intégral
Accéder au texte intégral
Article -
8
Point cloud denoising by robust PCA dimension reduction
Publié 2024Accéder au texte intégral
Thesis-Master by Coursework -
9
-
10
Convergence rate of dimension reduction in Bose-Einstein condensates
Publié 2007“…In this paper, we study dimension reduction of the three-dimensional (3D) Gross-Pitaevskii equation (GPE) modeling Bose-Einstein condensation under different limiting interaction and trapping frequency parameter regimes. …”
Journal article -
11
Gradient-Based Dimension Reduction of Multivariate Vector-Valued Functions
Publié 2021“…A numerical illustration shows that using gradients of the function yields effective dimension reduction. We also show how the choice of norm on the codomain of the function has an impact on the function's low-dimensional approximation.…”
Accéder au texte intégral
Article -
12
Gradient-Based Dimension Reduction of Multivariate Vector-Valued Functions
Publié 2022“…A numerical illustration shows that using gradients of the function yields effective dimension reduction. We also show how the choice of norm on the codomain of the function has an impact on the function's low-dimensional approximation.…”
Accéder au texte intégral
Article -
13
Semi-supervised dimension reduction using trace ratio criterion
Publié 2013“…In this brief, we address the trace ratio (TR) problem for semi-supervised dimension reduction. We first reformulate the objective function of the recent work semi-supervised discriminant analysis (SDA) in a TR form. …”
Accéder au texte intégral
Accéder au texte intégral
Journal Article -
14
Alternative Model for Extracting Multidimensional Data Based-on Comparative Dimension Reduction
Publié 2011“…In line with the technological developments, the current data tends to be multidimensional and high dimensional, which is more complex than conventional data and need dimension reduction. Dimension reduction is important in cluster analysis and creates a new representation for the data that is smaller in volume and has the same analytical results as the original representation. …”
Accéder au texte intégral
Conference or Workshop Item -
15
A time-triggered dimension reduction algorithm for the task assignment problem
Publié 2022“…The computational speed is accelerated via our time-triggered dimension reduction scheme, where the triggering condition is designed based on the optimality tolerance and the convexity of the cost function. …”
Conference item -
16
Improved interpretability of brain-behaviour CCA with domain-driven dimension reduction
Publié 2022“…In this paper, we introduce a Domain-driven Dimension Reduction (DDR) method, reducing the dimensionality of the original datasets combining human knowledge of the structure of the variables studied. …”
Journal article -
17
-
18
Gradient-based dimension reduction for Bayesian inverse problems and simulation-based inference
Publié 2023“…Our final thrust broadens the applicability of gradient-based dimension reduction to problems where such gradients are not available. …”
Accéder au texte intégral
Accéder au texte intégral
Thèse -
19
-
20
Patch distribution compatible semisupervised dimension reduction for face and human gait recognition
Publié 2013“…We propose a new semisupervised learning algorithm, referred to as patch distribution compatible semisupervised dimension reduction, for face and human gait recognition. …”
Accéder au texte intégral
Accéder au texte intégral
Journal Article