-
8061
-
8062
-
8063
Historias de la lucha por la paz
Published 2006-12-01“…A propósito del libro Movimiento por la Paz en Colombia 1978-2003 de Mauricio García Durán, S.J.…”
Get full text
Article -
8064
Factores de riesgo asociados a metástasis en pacientes con cáncer de próstata
Published 2022-12-01“…DOI: 1002/ijc.29842 PMid: 26355806 PMCid: PMC5042346 Birtle AJ, Freeman A, Masters JRW, Payne HA, Harland SJ, BAUS Section of Oncology Cancer Registry. Clinical features of patients who present with metastatic prostate carcinoma and serum prostate-specific antigen (PSA) levels < 10 ng/mL: the «PSA negative» patients. …”
Get full text
Article -
8065
LA ‘QUIEBRA DEL MARAVEDÍ DE ORO’, FINALIZANDO EL REINADO DE FERNANDO III (1217-1230/1252) (ÍNDICE DE NOMBRES DE MONEDA, PESOS Y MEDIDAS DEL LIBRO DE ROBERTO I. BURNS S. J.1)
Published 2008-01-01“…Se añade un índice pormenorizado de palabras sobre moneda, pesos y medidas del siglo XIII, que aparecen en el libro de R.I.Burns, S.J.…”
Get full text
Article -
8066
Selected Abstracts of the 2nd Congress of joint European Neonatal Societies (jENS 2017); Venice (Italy); October 31-November 4, 2017; Session "Neurology and Follow-up"
Published 2017-10-01“…BEDSIDE MONITORING OF CEREBRAL METABOLISM IN NEONATES AT RISK FOR HYPOXIC-ISCHEMIC ENCEPHALOPATHY • M. El-Dib, S.J. Blackwell, F. Yi, R. Vyas, C.G. Ha, B. Walsh, T.E. …”
Get full text
Article -
8067
What is next for occupational cancer epidemiology?
Published 2022-11-01“…Datta GD, Lauzon M, Salvy SJ, Hussain SK, Ghandehari S, Merchant A, et al. …”
Get full text
Article -
8068
CANO/ACIO Annual Conference Workshop Abstracts
Published 2024-02-01“…Cooper<sup>1,2<span class="Apple-converted-space"> </span></sup> A. Julius<sup>1</sup>, S.J. Mayo<sup>1,2<span class="Apple-converted-space"> </span></sup></em></p><p class="p2"> </p><p class="p1">IV-3-A<br />Oncology nurses’ readiness to provide person-centred care informed by genomics: A mixed-methods study</p><p class="p2"><em>Rebecca Puddester<sup>1</sup>, Joy Maddigan<sup>1</sup>, April Pike<sup>1</sup>, Holly Etchegary<sup>2</sup>, Angela Hyde<sup>2,3</sup>, Lesa Dawson<sup>2,4</sup>, Kathleen Stevens<sup>1</sup></em></p><p class="p2"> </p><p class="p1">IV-3-B<br />Supporting the transition: Examining a nurse practitioner-led intervention for gynecological cancer survivors</p><p class="p2"><em>Alexandra Lawrynuik<sup>1</sup>, Jacqueline Galica<sup>1</sup>, Jan Giroux<sup>2</sup></em></p><p class="p2"> </p><p class="p1">IV-3-C<br />Understanding how to better support oncology nurses in conducting advanced care planning in BC’s Cancer Care System</p><p class="p2"><em>Heather M Kilgour<sup>1,2</sup>, A Fuchsia Howard<sup>2</sup>, Michael McKenzie<sup>1,2</sup>, Sally Thorne<sup>2</sup>, Leah K Lambert<sup>1,2</sup></em></p><p class="p13"> </p><p class="p1">IV-4-A<br />The genetic evolution of AML: Implications for nursing practice</p><p class="p2"><em>Hassan Zahreddine</em></p><p class="p2"> </p><p class="p1">IV-4-B<br />Exploring the need for Human Leukocyte Antigen (HLA) matched platelets in patients diagnosed with a hematological cancer</p><p class="p2"><em>Alessia Lamanna, Aisha Winn</em></p><p class="p2"> </p><p class="p1">IV-4-C<br />Strategic collaboration between cancer patient organizations and Canadian Oncology Nurses: Learning from myeloma patient groups worldwide</p><p class="p2"><em>Martine Elias<sup>1</sup>, Beth Faiman<sup>2</sup></em></p><p class="p2"> </p><p class="p1">IV-4-D<br />An overview of myeloproliferative neoplasms, symptom assessment and the shared-care model at Princess Margaret Cancer Centre</p><p class="p2"><em>Verna Cheung, Hassan Sibai, Aniket Bankar, Marta Davidson, Vikas Gupta, Dawn Maze</em></p><p class="p2"> </p><p class="p1">IV-5-A<br />Connect and exchange for system transformation – A workshop for oncology practice leaders</p><p class="p2"><em>Joy Tarasuk, Kara Jamieson, Julia Kaal, Carolyn Fifield, Pamela Robichaud, Julia MacLeod, Carla MacDonald, Natasha McMaster, Margaret Ann Morrison, Helmut Hollenhorst</em></p><p class="p2"> </p><p class="p1">IV-5-B<br />How to start that conversation?”…”
Get full text
Article -
8069
Remarks on smallness of chemotactic effect for asymptotic stability in a two-species chemotaxis system
Published 2016-08-01“…<p> This paper deals with the two-species chemotaxis system <br /> <img style="height:50px;" src="" alt="" /> </p> where Ω is a bounded domain in R<sup><em>N</em></sup> with smooth boundary ∂Ω, <em>N</em>∈N; <em>h</em>,<em>X</em><sub><em>i</em></sub> are functions satisfying some conditions. …”
Get full text
Article