Showing 581 - 588 results of 588 for search '"CUDA"', query time: 0.08s Refine Results
  1. 581
  2. 582

    Highly efficient fluid-solid coupled incompressible SPH simulation method for atherosclerotic plaque generation(动脉粥样硬化斑块生成的高效流固耦合不可压缩SPH模拟方法)... by 汪飞(WANG Fei), 汪飞(WANG Fei), 汪飞(WANG Fei), 汪飞(WANG Fei), 汪飞(WANG Fei), 汪飞(WANG Fei)

    Published 2023-11-01
    “…为使模拟结果能够实时呈现,用统一计算设备架构(compute unified device architecture,CUDA)实现并行加速计算。方法实现了对血液中斑块生成的快速模拟,避免了用偏微分方程模型模拟带来的高计算量;同时能较真实地模拟斑块生成过程并体现血液与斑块的流固耦合作用;最后逼真展现了斑块模拟的渲染结果。…”
    Get full text
    Article
  3. 583

    High performance simulation of drug release model and mass transport model by using hybrid platform by Ali, Akhtar

    Published 2018
    “…Furthermore, the motivation for using GPU accelerators with CUDA is explained to handle computational complexities. …”
    Get full text
    Thesis
  4. 584

    Panicle-SEG: a robust image segmentation method for rice panicles in the field based on deep learning and superpixel optimization by Xiong Xiong, Lingfeng Duan, Lingbo Liu, Haifu Tu, Peng Yang, Dan Wu, Guoxing Chen, Lizhong Xiong, Wanneng Yang, Qian Liu

    Published 2017-11-01
    “…Meanwhile, the executing speed is also improved when combined with multithreading and CUDA parallel acceleration. Moreover, Panicle-SEG was demonstrated to be a robust segmentation algorithm, which can be expanded for different rice accessions, different field environments, different camera angles, different reproductive stages, and indoor rice images. …”
    Get full text
    Article
  5. 585

    Online teleoperation of writing manipulator through graphics processing unit based accelerated stereo vision by Abu Raid, Fadi Imad Osman

    Published 2021
    “…These algorithms are then parallelized using Compute Unified Device Architecture CUDA C language to run on Graphics Processing Unit GPU for hardware acceleration. …”
    Get full text
    Thesis
  6. 586

    Model-based markerless human motion capture from multiple camera sequences by Zhang, Zheng.

    Published 2013
    “…The requirement of real-time processing motivates us to accelerate the tracking by implementing time-consuming steps on GPU using CUDA. Benefiting from the massive parallelism of GPU, our method is capable of tracking full body movements robustly and efficiently.…”
    Get full text
    Thesis
  7. 587

    Efficient agglomerative hierarchical clustering for biological sequence analysis by Nguyen, Thuy Diem

    Published 2015
    “…I have developed two OTU clustering pipelines for 454 pyrosequencing datasets called CRiSPy-Embed and CRiSPy-CUDA. A comprehensive evaluation benchmark using randomly simulated datasets and popular mock datasets has been designed to test the performance of these pipelines against existing tools. …”
    Get full text
    Thesis
  8. 588

    Multiple-Relaxation-Time Lattice Boltzmann Simulation of Soret and Dufour Effects on the Thermosolutal Natural Convection of a Nanofluid in a U-Shaped Porous Enclosure by Md. Mahadul Islam, Md Farhad Hasan, Md. Mamun Molla

    Published 2023-10-01
    “…The benchmark results thoroughly validate the graphics process unit (GPU) based in-house compute unified device architecture (CUDA) C/C++ code. Numeral simulations were performed for a variety of dimensionless variables, including the Rayleigh number, (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>a</mi></mrow></semantics></math></inline-formula> = <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mn>10</mn><mn>4</mn></msup><mo>,</mo><msup><mn>10</mn><mn>5</mn></msup><mo>,</mo><msup><mn>10</mn><mn>6</mn></msup></mrow></semantics></math></inline-formula>), the Darcy number, (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>D</mi><mi>a</mi></mrow></semantics></math></inline-formula> = <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mn>10</mn><mrow><mo>−</mo><mn>2</mn></mrow></msup><mo>,</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup><mo>,</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>4</mn></mrow></msup></mrow></semantics></math></inline-formula>), the Soret number, (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>r</mi></mrow></semantics></math></inline-formula> = <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.0</mn><mo>,</mo><mn>0.1</mn><mo>,</mo><mn>0.2</mn></mrow></semantics></math></inline-formula>), the Dufour number, (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>D</mi><mi>f</mi></msub></semantics></math></inline-formula> = <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.0</mn><mo>,</mo><mn>0.1</mn><mo>,</mo><mn>0.2</mn></mrow></semantics></math></inline-formula>), the buoyancy ratio, (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>−</mo><mn>2</mn><mo>≤</mo><mi>B</mi><mi>r</mi><mo>≤</mo><mn>2</mn></mrow></semantics></math></inline-formula>), the Lewis number, (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mi>e</mi></mrow></semantics></math></inline-formula> = <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>5</mn></mrow></semantics></math></inline-formula>), the volume fraction, (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo>≤</mo><mi>ϕ</mi><mo>≤</mo><mn>0.04</mn></mrow></semantics></math></inline-formula>), and the porosity, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϵ</mi></semantics></math></inline-formula> = (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.2</mn><mo>−</mo><mn>0.8</mn></mrow></semantics></math></inline-formula>), and the Prandtl number, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mi>r</mi></mrow></semantics></math></inline-formula> = <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>6.2</mn></mrow></semantics></math></inline-formula> (water) is fixed to represent the base fluid. …”
    Get full text
    Article