-
141
Ergodic Capacity for the SIMO Nakagami-<inline-formula> <graphic file="1687-1499-2009-802067-i1.gif"/></inline-formula> Channel
Published 2009-01-01“…<p/> <p>This paper presents closed-form expressions for the ergodic channel capacity of SIMO (single-input and multiple output) wireless systems operating in a Nakagami-<inline-formula> <graphic file="1687-1499-2009-802067-i2.gif"/></inline-formula> fading channel. As the performance of SIMO channel is closely related to the diversity combining techniques, we present closed-form expressions for the capacity of maximal ratio combining (MRC), equal gain combining (EGC), selection combining (SC), and switch and stay (SSC) diversity systems operating in Nakagami-<inline-formula> <graphic file="1687-1499-2009-802067-i3.gif"/></inline-formula> fading channels. …”
Get full text
Article -
142
Parabolic inequalities with nonstandard growths and <inline-formula><graphic file="1687-2770-2006-29286-i1.gif"/></inline-formula> data
Published 2006-01-01“…<p/> <p>We prove an existence result for solutions of nonlinear parabolic inequalities with <inline-formula><graphic file="1687-2770-2006-29286-i2.gif"/></inline-formula> data in Orlicz spaces.</p>…”
Get full text
Article -
143
Shapiro's cyclic inequality for even <inline-formula><graphic file="1029-242X-2002-509463-i1.gif"/></inline-formula>
Published 2002-01-01“…Shapiro proposed an inequality for a cyclic sum in <inline-formula><graphic file="1029-242X-2002-509463-i2.gif"/></inline-formula> variables. All the numerical evidence indicates that the inequality is true for even <inline-formula><graphic file="1029-242X-2002-509463-i3.gif"/></inline-formula> and for odd <inline-formula><graphic file="1029-242X-2002-509463-i4.gif"/></inline-formula>. …”
Get full text
Article -
144
A Note on Geodesically Bounded <inline-formula> <graphic file="1687-1812-2010-393470-i1.gif"/></inline-formula>-Trees
Published 2010-01-01“…It is also noted that if <inline-formula> <graphic file="1687-1812-2010-393470-i3.gif"/></inline-formula> is a closed convex geodesically bounded subset of a complete <inline-formula> <graphic file="1687-1812-2010-393470-i4.gif"/></inline-formula>-tree <inline-formula> <graphic file="1687-1812-2010-393470-i5.gif"/></inline-formula> and if a nonexpansive mapping <inline-formula> <graphic file="1687-1812-2010-393470-i6.gif"/></inline-formula> satisfies <inline-formula> <graphic file="1687-1812-2010-393470-i7.gif"/></inline-formula> then <inline-formula> <graphic file="1687-1812-2010-393470-i8.gif"/></inline-formula> has a fixed point. …”
Get full text
Article -
145
A Note on <inline-formula> <graphic file="1029-242X-2010-584642-i1.gif"/></inline-formula>-Hyponormal Operators
Published 2010-01-01“…<p>Abstract</p> <p>We study <inline-formula> <graphic file="1029-242X-2010-584642-i2.gif"/></inline-formula>-normal operators and <inline-formula> <graphic file="1029-242X-2010-584642-i3.gif"/></inline-formula>-hyponormal operators. …”
Get full text
Article -
146
On the Exponent of Convergence for the Zeros of the Solutions of <inline-formula> <graphic file="1029-242X-2010-428936-i1.gif"/></inline-formula>
Published 2010-01-01“…<p/> <p>Let <inline-formula> <graphic file="1029-242X-2010-428936-i2.gif"/></inline-formula> and <inline-formula> <graphic file="1029-242X-2010-428936-i3.gif"/></inline-formula> be entire functions of order less than 1 with <inline-formula> <graphic file="1029-242X-2010-428936-i4.gif"/></inline-formula> and <inline-formula> <graphic file="1029-242X-2010-428936-i5.gif"/></inline-formula> transcendental. …”
Get full text
Article -
147
-
148
Transfinite diameter of Bernstein sets in <inline-formula><graphic file="1029-242X-2002-680202-i1.gif"/></inline-formula>
Published 2002-01-01“…<p/> <p>Let <inline-formula><graphic file="1029-242X-2002-680202-i2.gif"/></inline-formula> be a compact set in <inline-formula><graphic file="1029-242X-2002-680202-i3.gif"/></inline-formula> satisfying the following generalized Bernstein inequality: for each <inline-formula><graphic file="1029-242X-2002-680202-i4.gif"/></inline-formula> such that <inline-formula><graphic file="1029-242X-2002-680202-i5.gif"/></inline-formula>, for each polynomial <inline-formula><graphic file="1029-242X-2002-680202-i6.gif"/></inline-formula> of degree <inline-formula><graphic file="1029-242X-2002-680202-i7.gif"/></inline-formula> <inline-formula><graphic file="1029-242X-2002-680202-i8.gif"/></inline-formula> where <inline-formula><graphic file="1029-242X-2002-680202-i9.gif"/></inline-formula> is a constant independent of <inline-formula><graphic file="1029-242X-2002-680202-i10.gif"/></inline-formula> and <inline-formula><graphic file="1029-242X-2002-680202-i11.gif"/></inline-formula>, <inline-formula><graphic file="1029-242X-2002-680202-i12.gif"/></inline-formula> is an infinite set of natural numbers that is also independent of <inline-formula><graphic file="1029-242X-2002-680202-i13.gif"/></inline-formula> and <inline-formula><graphic file="1029-242X-2002-680202-i14.gif"/></inline-formula>. …”
Get full text
Article -
149
<inline-formula> <graphic file="1029-242X-2010-124018-i1.gif"/></inline-formula>-Harmonic Equations and the Dirac Operator
Published 2010-01-01“…<p/> <p>We show how <inline-formula> <graphic file="1029-242X-2010-124018-i2.gif"/></inline-formula>-harmonic equations arise as components of Dirac systems. …”
Get full text
Article -
150
Estimates of <inline-formula> <graphic file="1029-242X-2010-435450-i1.gif"/></inline-formula>-Harmonic Conjugate Operator
Published 2010-01-01“…<p/> <p>We define the <inline-formula> <graphic file="1029-242X-2010-435450-i2.gif"/></inline-formula>-harmonic conjugate operator <inline-formula> <graphic file="1029-242X-2010-435450-i3.gif"/></inline-formula> and prove that for <inline-formula> <graphic file="1029-242X-2010-435450-i4.gif"/></inline-formula>, there is a constant <inline-formula> <graphic file="1029-242X-2010-435450-i5.gif"/></inline-formula> such that <inline-formula> <graphic file="1029-242X-2010-435450-i6.gif"/></inline-formula> for all <inline-formula> <graphic file="1029-242X-2010-435450-i7.gif"/></inline-formula> if and only if the nonnegative weight <inline-formula> <graphic file="1029-242X-2010-435450-i8.gif"/></inline-formula> satisfies the <inline-formula> <graphic file="1029-242X-2010-435450-i9.gif"/></inline-formula>-condition. …”
Get full text
Article -
151
The Obstacle Problem for the <inline-formula> <graphic file="1029-242X-2010-767150-i1.gif"/></inline-formula>-Harmonic Equation
Published 2010-01-01“…Secondly, we also define the supersolution and subsolution of the <inline-formula> <graphic file="1029-242X-2010-767150-i2.gif"/></inline-formula>-harmonic equation and the obstacle problems for differential forms which satisfy the <inline-formula> <graphic file="1029-242X-2010-767150-i3.gif"/></inline-formula>-harmonic equation, and we obtain the relations between the solutions to <inline-formula> <graphic file="1029-242X-2010-767150-i4.gif"/></inline-formula>-harmonic equation and the solution to the obstacle problem of the <inline-formula> <graphic file="1029-242X-2010-767150-i5.gif"/></inline-formula>-harmonic equation. …”
Get full text
Article -
152
Differences of Weighted Composition Operators on <inline-formula> <graphic file="1029-242X-2009-127431-i1.gif"/></inline-formula>
Published 2009-01-01“…<p>Abstract</p> <p>We study the boundedness and compactness of differences of weighted composition operators on weighted Banach spaces in the unit ball of <inline-formula> <graphic file="1029-242X-2009-127431-i2.gif"/></inline-formula>.</p>…”
Get full text
Article -
153
The James constant of normalized norms on <inline-formula><graphic file="1029-242X-2006-26265-i1.gif"/></inline-formula>
Published 2006-01-01“…<p/> <p>We introduce a new class of normalized norms on <inline-formula><graphic file="1029-242X-2006-26265-i2.gif"/></inline-formula> which properly contains all absolute normalized norms. …”
Get full text
Article -
154
GIF-2209, an Oxindole Derivative, Accelerates Melanogenesis and Melanosome Secretion via the Modification of Lysosomes in B16F10 Mouse Melanoma Cells
Published 2021-12-01“…In contrast, GIF-2209 did not alter the mRNA levels of TYRP-1 and suppressed its protein levels. …”
Get full text
Article -
155
The Iterative Method of Generalized <inline-formula> <graphic file="1687-1812-2011-979261-i1.gif"/></inline-formula>-Concave Operators
Published 2011-01-01“…<p/> <p>We define the concept of the generalized <inline-formula> <graphic file="1687-1812-2011-979261-i2.gif"/></inline-formula>-concave operators, which generalize the definition of the <inline-formula> <graphic file="1687-1812-2011-979261-i3.gif"/></inline-formula>-concave operators. …”
Get full text
Article -
156
Congruences for Generalized <inline-formula> <graphic file="1029-242X-2008-270713-i1.gif"/></inline-formula>-Bernoulli Polynomials
Published 2008-01-01“…<p>Abstract</p> <p>In this paper, we give some further properties of <inline-formula> <graphic file="1029-242X-2008-270713-i2.gif"/></inline-formula>-adic <inline-formula> <graphic file="1029-242X-2008-270713-i3.gif"/></inline-formula>-<inline-formula> <graphic file="1029-242X-2008-270713-i4.gif"/></inline-formula>-function of two variables, which is recently constructed by Kim (2005) and Cenkci (2006). …”
Get full text
Article -
157
Transcriptome Reveals 1400-Fold Upregulation of APOA4-APOC3 and 1100-Fold Downregulation of GIF in the Patients with Polycythemia-Induced Gastric Injury.
Published 2015-01-01“…In contrast, gastric intrinsic factor (GIF) was 1102-fold down-regulated in GML patients compared with the controls. …”
Get full text
Article -
158
A note on <inline-formula><graphic file="1029-242X-2002-268130-i1.gif"/></inline-formula>-hyponormal operators
Published 2002-01-01“…<p/> <p>Let <inline-formula><graphic file="1029-242X-2002-268130-i2.gif"/></inline-formula> be a <inline-formula><graphic file="1029-242X-2002-268130-i3.gif"/></inline-formula>-hyponormal operator with the polar decomposition <inline-formula><graphic file="1029-242X-2002-268130-i4.gif"/></inline-formula>. …”
Get full text
Article -
159
New Approach to <inline-formula><graphic file="1687-1847-2010-431436-i1.gif"/></inline-formula>-Euler Numbers and Polynomials
Published 2010-01-01“…<p/> <p>We give a new construction of the <inline-formula><graphic file="1687-1847-2010-431436-i2.gif"/></inline-formula>-extensions of Euler numbers and polynomials. …”
Get full text
Article -
160
Some Inequalities for the <inline-formula> <graphic file="1029-242X-2009-320786-i1.gif"/></inline-formula>-Curvature Image
Published 2009-01-01“…<p/> <p>Lutwak introduced the notion of <inline-formula> <graphic file="1029-242X-2009-320786-i2.gif"/></inline-formula>-curvature image and proved an inequality for the volumes of convex body and its <inline-formula> <graphic file="1029-242X-2009-320786-i3.gif"/></inline-formula>-curvature image. …”
Get full text
Article