Showing 141 - 160 results of 6,617 for search '"GIF"', query time: 0.32s Refine Results
  1. 141

    Ergodic Capacity for the SIMO Nakagami-<inline-formula> <graphic file="1687-1499-2009-802067-i1.gif"/></inline-formula> Channel by Vagenas EfstathiosD, Karadimas Petros, Kotsopoulos StavrosA

    Published 2009-01-01
    “…<p/> <p>This paper presents closed-form expressions for the ergodic channel capacity of SIMO (single-input and multiple output) wireless systems operating in a Nakagami-<inline-formula> <graphic file="1687-1499-2009-802067-i2.gif"/></inline-formula> fading channel. As the performance of SIMO channel is closely related to the diversity combining techniques, we present closed-form expressions for the capacity of maximal ratio combining (MRC), equal gain combining (EGC), selection combining (SC), and switch and stay (SSC) diversity systems operating in Nakagami-<inline-formula> <graphic file="1687-1499-2009-802067-i3.gif"/></inline-formula> fading channels. …”
    Get full text
    Article
  2. 142

    Parabolic inequalities with nonstandard growths and <inline-formula><graphic file="1687-2770-2006-29286-i1.gif"/></inline-formula> data by Aboulaich R, Achchab B, Meskine D, Souissi A

    Published 2006-01-01
    “…<p/> <p>We prove an existence result for solutions of nonlinear parabolic inequalities with <inline-formula><graphic file="1687-2770-2006-29286-i2.gif"/></inline-formula> data in Orlicz spaces.</p>…”
    Get full text
    Article
  3. 143

    Shapiro's cyclic inequality for even <inline-formula><graphic file="1029-242X-2002-509463-i1.gif"/></inline-formula> by Mcleod JB, Bushell PJ

    Published 2002-01-01
    “…Shapiro proposed an inequality for a cyclic sum in <inline-formula><graphic file="1029-242X-2002-509463-i2.gif"/></inline-formula> variables. All the numerical evidence indicates that the inequality is true for even <inline-formula><graphic file="1029-242X-2002-509463-i3.gif"/></inline-formula> and for odd <inline-formula><graphic file="1029-242X-2002-509463-i4.gif"/></inline-formula>. …”
    Get full text
    Article
  4. 144

    A Note on Geodesically Bounded <inline-formula> <graphic file="1687-1812-2010-393470-i1.gif"/></inline-formula>-Trees by Kirk WA

    Published 2010-01-01
    “…It is also noted that if <inline-formula> <graphic file="1687-1812-2010-393470-i3.gif"/></inline-formula> is a closed convex geodesically bounded subset of a complete <inline-formula> <graphic file="1687-1812-2010-393470-i4.gif"/></inline-formula>-tree <inline-formula> <graphic file="1687-1812-2010-393470-i5.gif"/></inline-formula> and if a nonexpansive mapping <inline-formula> <graphic file="1687-1812-2010-393470-i6.gif"/></inline-formula> satisfies <inline-formula> <graphic file="1687-1812-2010-393470-i7.gif"/></inline-formula> then <inline-formula> <graphic file="1687-1812-2010-393470-i8.gif"/></inline-formula> has a fixed point. …”
    Get full text
    Article
  5. 145

    A Note on <inline-formula> <graphic file="1029-242X-2010-584642-i1.gif"/></inline-formula>-Hyponormal Operators by Gao Zongsheng, Wang Xiaohuan

    Published 2010-01-01
    “…<p>Abstract</p> <p>We study <inline-formula> <graphic file="1029-242X-2010-584642-i2.gif"/></inline-formula>-normal operators and <inline-formula> <graphic file="1029-242X-2010-584642-i3.gif"/></inline-formula>-hyponormal operators. …”
    Get full text
    Article
  6. 146

    On the Exponent of Convergence for the Zeros of the Solutions of <inline-formula> <graphic file="1029-242X-2010-428936-i1.gif"/></inline-formula> by Alotaibi Abdullah

    Published 2010-01-01
    “…<p/> <p>Let <inline-formula> <graphic file="1029-242X-2010-428936-i2.gif"/></inline-formula> and <inline-formula> <graphic file="1029-242X-2010-428936-i3.gif"/></inline-formula> be entire functions of order less than 1 with <inline-formula> <graphic file="1029-242X-2010-428936-i4.gif"/></inline-formula> and <inline-formula> <graphic file="1029-242X-2010-428936-i5.gif"/></inline-formula> transcendental. …”
    Get full text
    Article
  7. 147
  8. 148

    Transfinite diameter of Bernstein sets in <inline-formula><graphic file="1029-242X-2002-680202-i1.gif"/></inline-formula> by Bialas-Cie&#380; Leokadia, Jedrzejowski Mieczys&#322;aw

    Published 2002-01-01
    “…<p/> <p>Let <inline-formula><graphic file="1029-242X-2002-680202-i2.gif"/></inline-formula> be a compact set in <inline-formula><graphic file="1029-242X-2002-680202-i3.gif"/></inline-formula> satisfying the following generalized Bernstein inequality: for each <inline-formula><graphic file="1029-242X-2002-680202-i4.gif"/></inline-formula> such that <inline-formula><graphic file="1029-242X-2002-680202-i5.gif"/></inline-formula>, for each polynomial <inline-formula><graphic file="1029-242X-2002-680202-i6.gif"/></inline-formula> of degree <inline-formula><graphic file="1029-242X-2002-680202-i7.gif"/></inline-formula> <inline-formula><graphic file="1029-242X-2002-680202-i8.gif"/></inline-formula> where <inline-formula><graphic file="1029-242X-2002-680202-i9.gif"/></inline-formula> is a constant independent of <inline-formula><graphic file="1029-242X-2002-680202-i10.gif"/></inline-formula> and <inline-formula><graphic file="1029-242X-2002-680202-i11.gif"/></inline-formula>, <inline-formula><graphic file="1029-242X-2002-680202-i12.gif"/></inline-formula> is an infinite set of natural numbers that is also independent of <inline-formula><graphic file="1029-242X-2002-680202-i13.gif"/></inline-formula> and <inline-formula><graphic file="1029-242X-2002-680202-i14.gif"/></inline-formula>. …”
    Get full text
    Article
  9. 149

    <inline-formula> <graphic file="1029-242X-2010-124018-i1.gif"/></inline-formula>-Harmonic Equations and the Dirac Operator by Nolder CraigA

    Published 2010-01-01
    “…<p/> <p>We show how <inline-formula> <graphic file="1029-242X-2010-124018-i2.gif"/></inline-formula>-harmonic equations arise as components of Dirac systems. …”
    Get full text
    Article
  10. 150

    Estimates of <inline-formula> <graphic file="1029-242X-2010-435450-i1.gif"/></inline-formula>-Harmonic Conjugate Operator by Lee Jaesung, Rim KyungSoo

    Published 2010-01-01
    “…<p/> <p>We define the <inline-formula> <graphic file="1029-242X-2010-435450-i2.gif"/></inline-formula>-harmonic conjugate operator <inline-formula> <graphic file="1029-242X-2010-435450-i3.gif"/></inline-formula> and prove that for <inline-formula> <graphic file="1029-242X-2010-435450-i4.gif"/></inline-formula>, there is a constant <inline-formula> <graphic file="1029-242X-2010-435450-i5.gif"/></inline-formula> such that <inline-formula> <graphic file="1029-242X-2010-435450-i6.gif"/></inline-formula> for all <inline-formula> <graphic file="1029-242X-2010-435450-i7.gif"/></inline-formula> if and only if the nonnegative weight <inline-formula> <graphic file="1029-242X-2010-435450-i8.gif"/></inline-formula> satisfies the <inline-formula> <graphic file="1029-242X-2010-435450-i9.gif"/></inline-formula>-condition. …”
    Get full text
    Article
  11. 151

    The Obstacle Problem for the <inline-formula> <graphic file="1029-242X-2010-767150-i1.gif"/></inline-formula>-Harmonic Equation by Bao Gejun, Zhu Haijing, Cao Zhenhua

    Published 2010-01-01
    “…Secondly, we also define the supersolution and subsolution of the <inline-formula> <graphic file="1029-242X-2010-767150-i2.gif"/></inline-formula>-harmonic equation and the obstacle problems for differential forms which satisfy the <inline-formula> <graphic file="1029-242X-2010-767150-i3.gif"/></inline-formula>-harmonic equation, and we obtain the relations between the solutions to <inline-formula> <graphic file="1029-242X-2010-767150-i4.gif"/></inline-formula>-harmonic equation and the solution to the obstacle problem of the <inline-formula> <graphic file="1029-242X-2010-767150-i5.gif"/></inline-formula>-harmonic equation. …”
    Get full text
    Article
  12. 152

    Differences of Weighted Composition Operators on <inline-formula> <graphic file="1029-242X-2009-127431-i1.gif"/></inline-formula> by Dai Jineng, Ouyang Caiheng

    Published 2009-01-01
    “…<p>Abstract</p> <p>We study the boundedness and compactness of differences of weighted composition operators on weighted Banach spaces in the unit ball of <inline-formula> <graphic file="1029-242X-2009-127431-i2.gif"/></inline-formula>.</p>…”
    Get full text
    Article
  13. 153

    The James constant of normalized norms on <inline-formula><graphic file="1029-242X-2006-26265-i1.gif"/></inline-formula> by Nilsrakoo Weerayuth, Saejung Satit

    Published 2006-01-01
    “…<p/> <p>We introduce a new class of normalized norms on <inline-formula><graphic file="1029-242X-2006-26265-i2.gif"/></inline-formula> which properly contains all absolute normalized norms. …”
    Get full text
    Article
  14. 154
  15. 155

    The Iterative Method of Generalized <inline-formula> <graphic file="1687-1812-2011-979261-i1.gif"/></inline-formula>-Concave Operators by Zhou Yanqiu, Sun Jingxian, Sun Jie

    Published 2011-01-01
    “…<p/> <p>We define the concept of the generalized <inline-formula> <graphic file="1687-1812-2011-979261-i2.gif"/></inline-formula>-concave operators, which generalize the definition of the <inline-formula> <graphic file="1687-1812-2011-979261-i3.gif"/></inline-formula>-concave operators. …”
    Get full text
    Article
  16. 156

    Congruences for Generalized <inline-formula> <graphic file="1029-242X-2008-270713-i1.gif"/></inline-formula>-Bernoulli Polynomials by Cenkci Mehmet, Kurt Veli

    Published 2008-01-01
    “…<p>Abstract</p> <p>In this paper, we give some further properties of <inline-formula> <graphic file="1029-242X-2008-270713-i2.gif"/></inline-formula>-adic <inline-formula> <graphic file="1029-242X-2008-270713-i3.gif"/></inline-formula>-<inline-formula> <graphic file="1029-242X-2008-270713-i4.gif"/></inline-formula>-function of two variables, which is recently constructed by Kim (2005) and Cenkci (2006). …”
    Get full text
    Article
  17. 157

    Transcriptome Reveals 1400-Fold Upregulation of APOA4-APOC3 and 1100-Fold Downregulation of GIF in the Patients with Polycythemia-Induced Gastric Injury. by Kang Li, Luobu Gesang, Zeng Dan, Lamu Gusang, Ciren Dawa, Yuqiang Nie

    Published 2015-01-01
    “…In contrast, gastric intrinsic factor (GIF) was 1102-fold down-regulated in GML patients compared with the controls. …”
    Get full text
    Article
  18. 158

    A note on <inline-formula><graphic file="1029-242X-2002-268130-i1.gif"/></inline-formula>-hyponormal operators by Huruya Tadasi, Kim Young Ok, Ch&#333; Muneo

    Published 2002-01-01
    “…<p/> <p>Let <inline-formula><graphic file="1029-242X-2002-268130-i2.gif"/></inline-formula> be a <inline-formula><graphic file="1029-242X-2002-268130-i3.gif"/></inline-formula>-hyponormal operator with the polar decomposition <inline-formula><graphic file="1029-242X-2002-268130-i4.gif"/></inline-formula>. …”
    Get full text
    Article
  19. 159

    New Approach to <inline-formula><graphic file="1687-1847-2010-431436-i1.gif"/></inline-formula>-Euler Numbers and Polynomials by Jang Lee-Chae, Rim Seog-Hoon, Kim Taekyun, Kim Young-Hee

    Published 2010-01-01
    “…<p/> <p>We give a new construction of the <inline-formula><graphic file="1687-1847-2010-431436-i2.gif"/></inline-formula>-extensions of Euler numbers and polynomials. …”
    Get full text
    Article
  20. 160

    Some Inequalities for the <inline-formula> <graphic file="1029-242X-2009-320786-i1.gif"/></inline-formula>-Curvature Image by Daijun Wei, Yu Xiang, Weidong Wang

    Published 2009-01-01
    “…<p/> <p>Lutwak introduced the notion of <inline-formula> <graphic file="1029-242X-2009-320786-i2.gif"/></inline-formula>-curvature image and proved an inequality for the volumes of convex body and its <inline-formula> <graphic file="1029-242X-2009-320786-i3.gif"/></inline-formula>-curvature image. …”
    Get full text
    Article