Showing 1 - 20 results of 74 for search '"Guan Li"', query time: 0.28s Refine Results
  1. 1
  2. 2

    Michael-Simon type inequalities in hyperbolic space Hn+1 ${\mathbb{H}}^{n+1}$ via Brendle-Guan-Li’s flows by Cui Jingshi, Zhao Peibiao

    Published 2024-04-01
    “…Further, we also establish and confirm a new sharp Michael-Simon inequality for the kth mean curvatures in Hn+1 ${\mathbb{H}}^{n+1}$ by virtue of the Brendle-Guan-Li’s flow (“An inverse curvature type hypersurface flow in Hn+1 ${\mathbb{H}}^{n+1}$ ,” (Preprint)) as below(0.2)∫Mλ′f2Ek2+|∇Mf|2Ek−12−∫M∇̄fλ′,ν⋅Ek−1+∫∂Mf⋅Ek−1≥pk◦q1−1(W1(Ω))1n−k+1∫Mfn−k+1n−k⋅Ek−1n−kn−k+1 \begin{align}\hfill & \underset{M}{\int }{\lambda }^{\prime }\sqrt{{f}^{2}{E}_{k}^{2}+\vert {\nabla }^{M}f{\vert }^{2}{E}_{k-1}^{2}}-\underset{M}{\int }\langle \bar{\nabla }\left(f{\lambda }^{\prime }\right),\nu \rangle \cdot {E}_{k-1}+\underset{\partial M}{\int }f\cdot {E}_{k-1}\hfill \\ \hfill & \quad \ge {\left({p}_{k}{\circ}{q}_{1}^{-1}\left({W}_{1}\left({\Omega}\right)\right)\right)}^{\frac{1}{n-k+1}}{\left(\underset{M}{\int }{f}^{\frac{n-k+1}{n-k}}\cdot {E}_{k-1}\right)}^{\frac{n-k}{n-k+1}}\hfill \end{align} provided that M is h-convex and Ω is the domain enclosed by M, p k(r) = ω n(λ′)k−1, W1(Ω)=1n|M| ${W}_{1}\left({\Omega}\right)=\frac{1}{n}\vert M\vert $ , λ′(r) = coshr, q1(r)=W1Srn+1 ${q}_{1}\left(r\right)={W}_{1}\left({S}_{r}^{n+1}\right)$ , the area for a geodesic sphere of radius r, and q1−1 ${q}_{1}^{-1}$ is the inverse function of q 1. …”
    Get full text
    Article
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20