-
121
<inline-formula><tex-math notation="LaTeX">$C^{2}N^{2}$</tex-math></inline-formula>: Complex-Valued Contourlet Neural Network
Published 2024-01-01Subjects: “…complex-valued contourlet neural network (C<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX">$^{2}$</tex-math> </inline-formula> </named-content>N<inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX">$^{2}$</tex-math> </inline-formula>)…”
Get full text
Article -
122
Some Integral Inequalities for Log-<inline-formula> <tex-math notation="LaTeX">$h$ </tex-math></inline-formula>-Convex Interval-Valued Functions
Published 2019-01-01“…We introduce the log-<inline-formula> <tex-math notation="LaTeX">$h$ </tex-math></inline-formula>-convex concept for the interval-valued functions (IVFs) and establish some of the new Jensen’s, Hadamard’s, and Hadamard-Fejér’s inequalities for this kind of functions, which generalize some known results. …”
Get full text
Article -
123
-
124
-
125
T<inline-formula><tex-math notation="LaTeX">$^{3}$</tex-math></inline-formula>SR: Texture Transfer Transformer for Remote Sensing Image Superresolution
Published 2022-01-01“…Here, we propose an end-to-end image superresolution network called texture transfer transformer for remote sensing image superresolution (T<inline-formula><tex-math notation="LaTeX">$^{3}$</tex-math></inline-formula>SR). For the first time, T<inline-formula><tex-math notation="LaTeX">$^{3}$</tex-math></inline-formula>SR introduces image texture transfer into remote sensing, which achieves the most advanced results. …”
Get full text
Article -
126
-
127
-
128
A Swap-Based Heuristic Algorithm for the Maximum <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-Plex Problem
Published 2019-01-01“…The maximum <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-plex problem is intended to relax the clique definition with maximum cardinality. …”
Get full text
Article -
129
Node Embedding With a <inline-formula> <tex-math notation="LaTeX">$CN$ </tex-math></inline-formula>-Based Random Walk for Community Search
Published 2019-01-01“…Given a query node <inline-formula> <tex-math notation="LaTeX">$v$ </tex-math></inline-formula> in network <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula>, the goal of community search is to discover a community in <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula> that contains node <inline-formula> <tex-math notation="LaTeX">$v$ </tex-math></inline-formula>. …”
Get full text
Article -
130
Bagging Approach for Italian Domination in <inline-formula> <tex-math notation="LaTeX">$C_{n} \square\,P_{m}$ </tex-math></inline-formula>
Published 2019-01-01“…For graph <inline-formula> <tex-math notation="LaTeX">$G=(V,E)$ </tex-math></inline-formula>, the open neighborhood of a vertex <inline-formula> <tex-math notation="LaTeX">$v$ </tex-math></inline-formula> is <inline-formula> <tex-math notation="LaTeX">$N(v)=\{u\in V|uv\in E\}$ </tex-math></inline-formula>. …”
Get full text
Article -
131
-
132
Negacyclic Codes of Length <inline-formula> <tex-math notation="LaTeX">$2^mp^n$ </tex-math></inline-formula> Over Finite Fields
Published 2019-01-01“…Let <inline-formula> <tex-math notation="LaTeX">$F_{q}$ </tex-math></inline-formula> be a finite field of odd order <inline-formula> <tex-math notation="LaTeX">$q$ </tex-math></inline-formula>. …”
Get full text
Article -
133
An Efficient Local Search Algorithm for the Minimum <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-Dominating Set Problem
Published 2018-01-01“…The minimum <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-dominating set (MKDS) problem, a generalization of the classical minimum dominating set problem, is an important NP-hard combinatorial optimization problem with various applications. …”
Get full text
Article -
134
A Multioctave 8 GHz<inline-formula><tex-math notation="LaTeX">$-$</tex-math></inline-formula>40 GHz Receiver for Radio Astronomy
Published 2023-01-01“…At such great distances a subset of these objects exhibit as little as 10<inline-formula><tex-math notation="LaTeX">$-$</tex-math></inline-formula>50 <inline-formula><tex-math notation="LaTeX">$\mu$</tex-math></inline-formula>as/year observed parallax or proper motion, thus giving the frame excellent spatial and temporal stability. …”
Get full text
Article -
135
-
136
-
137
-
138
Monitoring of FinFET Characteristics Using <inline-formula> <tex-math notation="LaTeX">$\Delta V_{\text{DIBLSS}}/(I_{\text{on}}/I_{\text{off}})$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$\Delta V_{\text{DIBL}}/(I_{\text{on}}/I_{\text{off}})$ </tex-math></inline-formula>
Published 2019-01-01Get full text
Article -
139
Soliton Molecules With <inline-formula><tex-math notation="LaTeX">$\pm \pi {{/ 2, 0}}$</tex-math> </inline-formula>, and <inline-formula><tex-math notation="LaTeX">$\pi $</tex-math></inline-formula> Phase Differences in a Graphene-Based Mode-Locked Erbium-Doped Fiber Laser
Published 2018-01-01Get full text
Article -
140