-
141
-
142
-
143
-
144
-
145
-
146
-
147
<inline-formula> <tex-math notation="LaTeX">$L_p$ </tex-math></inline-formula>-Norm-Based Sparse Regularization Model for License Plate Deblurring
Published 2020-01-01“…We propose an <inline-formula> <tex-math notation="LaTeX">$L_{p}$ </tex-math></inline-formula>-norm-based sparse regularization model for license plate deblurring, which is motivated by distinctive properties of license plate images. …”
Get full text
Article -
148
-
149
-
150
-
151
-
152
-
153
-
154
<inline-formula> <tex-math notation="LaTeX">$HT$ </tex-math></inline-formula>: A Novel Labeling Scheme for k-Hop Reachability Queries on DAGs
Published 2019-01-01“…Given a directed acyclic graph (<italic>DAG</italic>), a <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-hop reachability query <inline-formula> <tex-math notation="LaTeX">${u}\xrightarrow {?…”
Get full text
Article -
155
-
156
Certain Bounds Related to Multi-Parameterized <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-Fractional Integral Inequalities and Their Applications
Published 2019-01-01“…A <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-fractional integral identity with multiple parameters is investigated. …”
Get full text
Article -
157
-
158
-
159
Higher-Order State and Disturbance Observer With <inline-formula> <tex-math notation="LaTeX">$O(T^{3})$ </tex-math></inline-formula> Errors for Linear Systems
Published 2019-01-01“…When the usual assumptions on the disturbance are satisfied, the magnitudes of the state and disturbance estimate errors of the system are proved to be on the order of <inline-formula> <tex-math notation="LaTeX">$O(T^{3})$ </tex-math></inline-formula>, which is much less than <inline-formula> <tex-math notation="LaTeX">$O(T^{2})$ </tex-math></inline-formula> produced by the proportional-integral-observer (PIO). …”
Get full text
Article -
160