Showing 101 - 120 results of 183 for search '"Medicinal Chemistry Research"', query time: 0.27s Refine Results
  1. 101

    Structural Biology Inspired Development of a Series of Human Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) Ligands: From Agonist to Antagonist by Hiroyuki Miyachi

    Published 2023-02-01
    “…This review summarizes our medicinal chemistry research on the design, synthesis, and pharmacological evaluation of a covalent-binding and non-covalent-binding hPPARγ antagonist, both of which have been created based on our working hypothesis of the helix 12 (H12) holding induction/inhibition concept. …”
    Get full text
    Article
  2. 102
  3. 103

    Characterization of Selective and Potent JAK1 Inhibitors Intended for the Inhaled Treatment of Asthma by Nilsson M, Rhedin M, Hendrickx R, Berglund S, Piras A, Blomgran P, Cavallin A, Collins M, Dahl G, Dekkak B, Ericsson T, Hagberg N, Holmberg AA, Leffler A, Lundqvist AJ, Markou T, Pinkerton J, Rönnblom L, Siu S, Taylor V, Wennberg T, Zervas D, Laurence ADJ, Mitra S, Belvisi MG, Birrell M, Borde A

    Published 2022-08-01
    “…Magnus Nilsson,1 Magdalena Rhedin,2 Ramon Hendrickx,3 Susanne Berglund,1 Antonio Piras,2 Parmis Blomgran,2 Anders Cavallin,2 Mia Collins,2 Göran Dahl,4 Bilel Dekkak,5 Therese Ericsson,3 Niklas Hagberg,6 Ann Aurell Holmberg,3 Agnes Leffler,2 Anders J Lundqvist,3 Thomais Markou,5,7 James Pinkerton,5,7 Lars Rönnblom,6 Stacey Siu,8 Vanessa Taylor,8 Tiiu Wennberg,2 Dimitrios Zervas,5,7 Arian D J Laurence,9 Suman Mitra,2 Maria G Belvisi,5,7 Mark Birrell,5,7 Annika Borde2 1Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; 2Bioscience, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; 3DMPK, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; 4Discovery Science, R&D, AstraZeneca, Gothenburg, Sweden; 5Respiratory Pharmacology Group, Division of Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK; 6Rheumatology and Science for Life Laboratories, Department of Medical Sciences, Uppsala University, Uppsala, Sweden; 7Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; 8Rigel Pharmaceuticals, South San Francisco, CA, USA; 9Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UKCorrespondence: Magnus Nilsson, Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, SE-431 83, Sweden, Tel +46722237222, Email Magnus.Nilsson@astrazeneca.comPurpose: Janus kinase 1 (JAK1) is implicated in multiple inflammatory pathways that are critical for the pathogenesis of asthma, including the interleukin (IL)-4, IL-5, IL-13, and thymic stromal lymphopoietin cytokine signaling pathways, which have previously been targeted to treat allergic asthma. …”
    Get full text
    Article
  4. 104
  5. 105
  6. 106
  7. 107

    Radiolabeled COX-2 Inhibitors for Non-Invasive Visualization of COX-2 Expression and Activity — A Critical Update by Torsten Kniess, Markus Laube, Jens Pietzsch

    Published 2013-05-01
    “…The development of new selective COX-2 inhibitors (COXIBs) for use in cancer treatment is in the focus of the medicinal chemistry research field. For this purpose, a set of methods is available to determine COX-2 expression and activity in vitro and ex vivo but it is still a problem to functionally characterize COX-2 in vivo. …”
    Get full text
    Article
  8. 108
  9. 109

    Importance of Biometals as Targets in Medicinal Chemistry: An Overview about the Role of Zinc (II) Chelating Agents by Rosalba Leuci, Leonardo Brunetti, Antonio Laghezza, Fulvio Loiodice, Paolo Tortorella, Luca Piemontese

    Published 2020-06-01
    “…This review is focused on the significance of zinc (II) chelating agents in past and future medicinal chemistry research, and on the importance of selectivity in order to revamp the possibility of their use in therapy, often hindered by possible side effects.…”
    Get full text
    Article
  10. 110

    Machine Learning Models to Predict Protein–Protein Interaction Inhibitors by Bárbara I. Díaz-Eufracio, José L. Medina-Franco

    Published 2022-11-01
    “…This work describes the performance of different algorithms and molecular fingerprints used in chemoinformatics to develop a classification model to identify PPI inhibitors making the codes freely available to the community, particularly the medicinal chemistry research groups working with PPI inhibitors. …”
    Get full text
    Article
  11. 111
  12. 112
  13. 113
  14. 114
  15. 115
  16. 116
  17. 117
  18. 118
  19. 119
  20. 120