Showing 1 - 20 results of 24 for search '"Noncommutative ring"', query time: 0.27s Refine Results
  1. 1
  2. 2
  3. 3

    Localization of noncommutative rings / by 344779 Golan, Jonathan S.

    Published 1975
    Subjects: “…Noncommutative rings…”
  4. 4
  5. 5

    Places and valuations in noncommutative ring theory / by 252776 Van Geel, Jan

    Published 1981
    Subjects: “…Noncommutative rings…”
  6. 6

    Structure sheaves over a noncommutative ring / by 344779 Golan, Jonathan S.

    Published 1980
    Subjects: “…Noncommutative rings…”
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17

    Jacobson’s conjecture and skew PBW extensions by Armando Reyes

    Published 2014-12-01
    Subjects: “…Noncommutative rings…”
    Get full text
    Article
  18. 18

    A Survey on Some Algebraic Characterizations of Hilbert’s Nullstellensatz for Non-commutative Rings of Polynomial Type by Armando Reyes, Jason Hernández-Mogollón

    Published 2020-06-01
    “…Once this is done, we illustrate the Nullstellensatz with examples appearing in noncommutative ring theory and non-commutative algebraic geometry.…”
    Get full text
    Article
  19. 19

    Determinants as Combinatorial Summation Formulas over an Algebra with a Unique $n$-ary Operation by G.P. Egorychev

    Published 2018-12-01
    “…In 1979-1980, the author has found the first polynomial identity for permanents over a commutative ring, and, in 2013, the polynomial identity of a new type for determinants over a noncommutative ring with associative powers. In this paper we give a general definition for determinant (the $e$-determinant) over an algebra with a unique $n$-ary $f$-operation. …”
    Get full text
    Article
  20. 20

    Mass Formula for Self-Orthogonal and Self-Dual Codes over Non-Unital Rings of Order Four by Adel Alahmadi, Altaf Alshuhail, Rowena Alma Betty, Lucky Galvez, Patrick Solé

    Published 2023-11-01
    “…We study the structure of self-orthogonal and self-dual codes over two non-unital rings of order four, namely, the commutative ring <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><mo>=</mo><mfenced separators="" open="⟨" close="⟩"><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mspace width="0.166667em"></mspace><mo>|</mo><mspace width="0.166667em"></mspace><mn>2</mn><mi>a</mi><mo>=</mo><mn>2</mn><mi>b</mi><mo>=</mo><mn>0</mn><mo>,</mo><mspace width="0.166667em"></mspace></mrow><msup><mi>a</mi><mn>2</mn></msup><mo>=</mo><mi>b</mi><mo>,</mo><mspace width="0.166667em"></mspace><mi mathvariant="italic">ab</mi><mo>=</mo><mn>0</mn></mfenced></mrow></semantics></math></inline-formula> and the noncommutative ring <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mo>=</mo><mfenced separators="" open="⟨" close="⟩"><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mspace width="0.166667em"></mspace><mo>|</mo><mspace width="0.166667em"></mspace><mn>2</mn><mi>a</mi><mo>=</mo><mn>2</mn><mi>b</mi><mo>=</mo><mn>0</mn><mo>,</mo><mspace width="0.166667em"></mspace></mrow><msup><mi>a</mi><mn>2</mn></msup><mo>=</mo><mi>a</mi><mo>,</mo><msup><mi>b</mi><mn>2</mn></msup><mo>=</mo><mi>b</mi><mo>,</mo><mspace width="0.166667em"></mspace><mi mathvariant="italic">ab</mi><mo>=</mo><mi>a</mi><mo>,</mo><mspace width="0.166667em"></mspace><mi mathvariant="italic">ba</mi><mo>=</mo><mi>b</mi></mfenced><mo>.…”
    Get full text
    Article