Showing 1,081 - 1,098 results of 1,098 for search '"Nonlinear partial differential equation"', query time: 0.48s Refine Results
  1. 1081

    The Impact of Reduced Gravity on Oscillatory Mixed Convective Heat Transfer around a Non-Conducting Heated Circular Cylinder by Zia Ullah, Muhammad Ashraf, Ioannis E. Sarris, Theodoros E. Karakasidis

    Published 2022-05-01
    “…The fluid motion is governed by connected nonlinear partial differential equations which are converted into convenient equations by applying a finite-difference scheme with the primitive transformation and a Gaussian elimination technique. …”
    Get full text
    Article
  2. 1082

    Response surface optimization and sensitive analysis on biomagnetic blood Carreau nanofluid flow in stenotic artery with motile gyrotactic microorganisms by Tao-Qian Tang, Zahir Shah, Thirupathi Thumma, Muhammad Rooman, Narcisa Vrinceanu, Mansoor H. Alshehri

    Published 2023-11-01
    “…The system's nonlinear partial differential equations are transformed into nonlinear ODEs through suitable transformations. …”
    Get full text
    Article
  3. 1083

    G-Jitter effect on heat and mass transfer of three-dimensional stagnation point nanofluid flow by Ahmad Kamal, Mohamad Hidayad

    Published 2022
    “…These nonlinear partial differential equations are initially reduced into a dimensionless system of equations using the similarity transformation technique. …”
    Get full text
    Thesis
  4. 1084

    Numerical investigation on the thermal-nanofluidic flow induced transverse and longitudinal vibrations of single and multi-walled branched nanotubes resting on nonlinear elastic fo... by A.A. Yinusa, M.G. Sobamowo, A.O. Adelaja, S.J. Ojolo, M.A. Waheed, M.A. Usman, Antonio Marcos de Oliveira Siqueira, Júlio César Costa Campos, Ridwan Ola-Gbadamosi

    Published 2024-03-01
    “…Therefore, in this present work, the developed coupled systems of nonlinear partial differential equations are solved using multi-dimensional numerical PDEs solvers coupled with PDE-tools in MATLAB. …”
    Get full text
    Article
  5. 1085

    Some new soliton solutions to the (3 + 1)-dimensional generalized KdV-ZK equation via enhanced modified extended tanh-expansion approach by Romana Ashraf, Farrah Ashraf, Ali Akgül, Saher Ashraf, B. Alshahrani, Mona Mahmoud, Wajaree Weera

    Published 2023-04-01
    “…GKdV-zk techniques solutions are obtained using the improved modified extended tanh expansion method, which is one of the most efficient algebraic methods for obtaining accurate solution to nonlinear partial differential equations. We aim to show how the analyzed model’s parameter impact soliton behavior by choosing different bright and single soliton forms and by developing various analytical optical soliton solutions for the explored equation. …”
    Get full text
    Article
  6. 1086

    A novel vortex dynamics for micropolar fluid flow in a lid-driven cavity with magnetic field localization – A computational approach by Shabbir Ahmad, Kashif Ali, Tanveer Sajid, Umaima Bashir, Farhan Lafta Rashid, Ravinder Kumar, Mohamed R. Ali, Ahmed S. Hendy, Adil Darvesh

    Published 2024-02-01
    “…We used a numerical method to solve the challenging nonlinear partial differential equations that arise from the mathematical modeling of the fluid flow in the presence of a magnetic field. …”
    Get full text
    Article
  7. 1087

    Prediction of stream water quality in Godavari River Basin, India using statistical and artificial neural network models by Nagalapalli Satish, Jagadeesh Anmala, Rajitha K, Murari Raja Raja Varma

    Published 2022-12-01
    “…The physically based computational water quality models would require large spatial and temporal information databases of climatic, hydrologic, and environmental variables and solutions of nonlinear, partial differential equations at each grid point in a river basin. …”
    Get full text
    Article
  8. 1088

    Multiple Shear-Banding Transitions for a Model of Wormlike Micellar Solutions by Zhou, Lin, Cook, L. Pamela, McKinley, Gareth H.

    Published 2013
    “…The addition of inertia into the coupled set of nonlinear partial differential equations describing the material response changes the type of the equation set, introducing a transient damped (diffusive and dispersive) inertio-elastic shear wave following the imposition of flow. …”
    Get full text
    Get full text
    Article
  9. 1089

    A Hybrided Method for Temporal Variable-Order Fractional Partial Differential Equations with Fractional Laplace Operator by Chengyi Wang, Shichao Yi

    Published 2024-02-01
    “…In this paper, we present a more general approach based on a Picard integral scheme for nonlinear partial differential equations with a variable time-fractional derivative of order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo stretchy="false">(</mo><mi mathvariant="bold">x</mi><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo>∈</mo><mo stretchy="false">(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> and space-fractional order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>s</mi><mo>∈</mo><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>v</mi><mo>=</mo><msup><mi>u</mi><mo>′</mo></msup><mrow><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> is introduced as the new unknown function and <i>u</i> is recovered using the quadrature. …”
    Get full text
    Article
  10. 1090

    DYNAMICS OF A GEOMETRICALLY AND PHYSICALLY NONLINEAR SENSITIVE ELEMENT OF A NANOELECTROMECHANICAL SENSOR IN THE FORM OF AN INHOMOGENEOUS NANOBEAM IN THE TEMPERATURE AND NOISE FIELD... by Vadim A. Krysko, Irina V. Papkova, Tatiana V. Yakovleva, Alena A. Zakharova, Maksim V. Zhigalov, Anton V. Krysko

    Published 2020-05-01
    “…Methods: variation methods, a second-order finite difference method for reducing the system of nonlinear partial differential equations to the Cauchy problem, the Newmark method for solving the Cauchy problem, the Birger method of variable elasticity parameters for solving a physically non-linear problem, the variation iteration method for obtaining an analytical solution of the two-dimensional heat equation. …”
    Get full text
    Article
  11. 1091

    Numerical Investigation of Double-Diffusive Convection in an Irregular Porous Cavity Subjected to Inclined Magnetic Field Using Finite Element Method by Imran Shabir Chuhan, Jing Li, Muhammad Shafiq Ahmed, Inna Samuilik, Muhammad Aqib Aslam, Malik Abdul Manan

    Published 2024-03-01
    “…Design/methodology/approach—After validating the results, the FEM (finite element method) is used to simulate the flow pattern, temperature variations, and concentration by solving the nonlinear partial differential equations with the modified Rayleigh number (10<sup>4</sup> ≤ <i>Ra</i> ≤ 10<sup>7</sup>), Darcy number (10<sup>−4</sup> ≤ <i>Da</i> ≤ 10<sup>−1</sup>), Lewis number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mn>0.1</mn><mo>≤</mo><mi>L</mi><mi>e</mi><mo>≤</mo><mn>10</mn><mo>)</mo></mrow></semantics></math></inline-formula>, and Hartmann number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced separators="|"><mrow><mn>0</mn><mo>≤</mo><mi>H</mi><mi>a</mi><mo>≤</mo><mn>40</mn></mrow></mfenced></mrow></semantics></math></inline-formula> as the dimensionless operating parameters. …”
    Get full text
    Article
  12. 1092
  13. 1093

    Hierarchies of the Korteweg–de Vries Equation Related to Complex Expansion and Perturbation by Tatyana V. Redkina, Arthur R. Zakinyan, Robert G. Zakinyan, Olesya B. Surneva

    Published 2023-04-01
    “…A hierarchy is understood here as a family of nonlinear partial differential equations with a Lax pair with a common scattering operator. …”
    Get full text
    Article
  14. 1094

    Numerical Study of Heat and Mass Transfer for Williamson Nanofluid over Stretching/Shrinking Sheet along with Brownian and Thermophoresis Effects by Aiguo Zhu, Haider Ali, Muhammad Ishaq, Muhammad Sheraz Junaid, Jawad Raza, Muhammad Amjad

    Published 2022-08-01
    “…Employing the similarity transformations, the governing nonlinear Partial Differential Equations (PDEs) are converted into the Ordinary Differential Equations (ODEs). …”
    Get full text
    Article
  15. 1095

    Steady Squeezing Flow of Magnetohydrodynamics Hybrid Nanofluid Flow Comprising Carbon Nanotube-Ferrous Oxide/Water with Suction/Injection Effect by Muhammad Sohail Khan, Sun Mei, Shabnam, Nehad Ali Shah, Jae Dong Chung, Aamir Khan, Said Anwar Shah

    Published 2022-02-01
    “…The governing equations of the proposed hybrid nanoliquid model are formulated through highly nonlinear partial differential equations (PDEs) including momentum equation, energy equation, and the magnetic field equation. …”
    Get full text
    Article
  16. 1096

    Methods for Constructing Complex Solutions of Nonlinear PDEs Using Simpler Solutions by Alexander V. Aksenov, Andrei D. Polyanin

    Published 2021-02-01
    “…This paper describes a number of simple but quite effective methods for constructing exact solutions of nonlinear partial differential equations that involve a relatively small amount of intermediate calculations. …”
    Get full text
    Article
  17. 1097

    Design of intelligent control system and its application on fabricated conveyor belt grain dryer by Lutfy, Omar F.

    Published 2011
    “…As a result, the mathematical models developed for these systems consist of sets of highly complex and nonlinear partial differential equations (PDEs) which require highly complicated numerical techniques to solve them. …”
    Get full text
    Thesis
  18. 1098

    Stability of the second order partial differential equations by Ghaemi MB, Cho YJ, Alizadeh B, Gordji M Eshaghi

    Published 2011-01-01
    “…</p> <p>In this paper, by using Banach's contraction principle, we prove the stability of nonlinear partial differential equations of the following forms:</p> <p><display-formula><m:math name="1029-242X-2011-81-i1" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:mrow> <m:mfenced separators="" open="{" close=""> <m:mrow> <m:mtable class="gathered"> <m:mtr> <m:mtd> <m:msub> <m:mrow> <m:mi>y</m:mi> </m:mrow> <m:mrow> <m:mi>x</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-rel">=</m:mo> <m:mi>f</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>t</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>y</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-punc">,</m:mo> </m:mtd> </m:mtr> <m:mtr> <m:mtd> <m:mi>a</m:mi> <m:msub> <m:mrow> <m:mi>y</m:mi> </m:mrow> <m:mrow> <m:mi>x</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-bin">+</m:mo> <m:mi>b</m:mi> <m:msub> <m:mrow> <m:mi>y</m:mi> </m:mrow> <m:mrow> <m:mi>t</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-rel">=</m:mo> <m:mi>f</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>t</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>y</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-punc">,</m:mo> </m:mtd> </m:mtr> <m:mtr> <m:mtd> <m:mi>p</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:msub> <m:mrow> <m:mi>y</m:mi> </m:mrow> <m:mrow> <m:mi>x</m:mi> <m:mi>t</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-bin">+</m:mo> <m:mi>q</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:msub> <m:mrow> <m:mi>y</m:mi> </m:mrow> <m:mrow> <m:mi>t</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-bin">+</m:mo> <m:msub> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>t</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:msub> <m:mrow> <m:mi>y</m:mi> </m:mrow> <m:mrow> <m:mi>x</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-bin">-</m:mo> <m:msub> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>x</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:msub> <m:mrow> <m:mi>y</m:mi> </m:mrow> <m:mrow> <m:mi>t</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-rel">=</m:mo> <m:mi>f</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>t</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>y</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-punc">,</m:mo> </m:mtd> </m:mtr> <m:mtr> <m:mtd> <m:mi>p</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:msub> <m:mrow> <m:mi>y</m:mi> </m:mrow> <m:mrow> <m:mi>x</m:mi> <m:mi>x</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-bin">+</m:mo> <m:mi>q</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:msub> <m:mrow> <m:mi>y</m:mi> </m:mrow> <m:mrow> <m:mi>x</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-rel">=</m:mo> <m:mi>f</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>t</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>y</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-punc">.…”
    Get full text
    Article