-
1081
The Impact of Reduced Gravity on Oscillatory Mixed Convective Heat Transfer around a Non-Conducting Heated Circular Cylinder
Published 2022-05-01“…The fluid motion is governed by connected nonlinear partial differential equations which are converted into convenient equations by applying a finite-difference scheme with the primitive transformation and a Gaussian elimination technique. …”
Get full text
Article -
1082
Response surface optimization and sensitive analysis on biomagnetic blood Carreau nanofluid flow in stenotic artery with motile gyrotactic microorganisms
Published 2023-11-01“…The system's nonlinear partial differential equations are transformed into nonlinear ODEs through suitable transformations. …”
Get full text
Article -
1083
G-Jitter effect on heat and mass transfer of three-dimensional stagnation point nanofluid flow
Published 2022“…These nonlinear partial differential equations are initially reduced into a dimensionless system of equations using the similarity transformation technique. …”
Get full text
Thesis -
1084
Numerical investigation on the thermal-nanofluidic flow induced transverse and longitudinal vibrations of single and multi-walled branched nanotubes resting on nonlinear elastic fo...
Published 2024-03-01“…Therefore, in this present work, the developed coupled systems of nonlinear partial differential equations are solved using multi-dimensional numerical PDEs solvers coupled with PDE-tools in MATLAB. …”
Get full text
Article -
1085
Some new soliton solutions to the (3 + 1)-dimensional generalized KdV-ZK equation via enhanced modified extended tanh-expansion approach
Published 2023-04-01“…GKdV-zk techniques solutions are obtained using the improved modified extended tanh expansion method, which is one of the most efficient algebraic methods for obtaining accurate solution to nonlinear partial differential equations. We aim to show how the analyzed model’s parameter impact soliton behavior by choosing different bright and single soliton forms and by developing various analytical optical soliton solutions for the explored equation. …”
Get full text
Article -
1086
A novel vortex dynamics for micropolar fluid flow in a lid-driven cavity with magnetic field localization – A computational approach
Published 2024-02-01“…We used a numerical method to solve the challenging nonlinear partial differential equations that arise from the mathematical modeling of the fluid flow in the presence of a magnetic field. …”
Get full text
Article -
1087
Prediction of stream water quality in Godavari River Basin, India using statistical and artificial neural network models
Published 2022-12-01“…The physically based computational water quality models would require large spatial and temporal information databases of climatic, hydrologic, and environmental variables and solutions of nonlinear, partial differential equations at each grid point in a river basin. …”
Get full text
Article -
1088
Multiple Shear-Banding Transitions for a Model of Wormlike Micellar Solutions
Published 2013“…The addition of inertia into the coupled set of nonlinear partial differential equations describing the material response changes the type of the equation set, introducing a transient damped (diffusive and dispersive) inertio-elastic shear wave following the imposition of flow. …”
Get full text
Get full text
Article -
1089
A Hybrided Method for Temporal Variable-Order Fractional Partial Differential Equations with Fractional Laplace Operator
Published 2024-02-01“…In this paper, we present a more general approach based on a Picard integral scheme for nonlinear partial differential equations with a variable time-fractional derivative of order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo stretchy="false">(</mo><mi mathvariant="bold">x</mi><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo>∈</mo><mo stretchy="false">(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> and space-fractional order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>s</mi><mo>∈</mo><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>v</mi><mo>=</mo><msup><mi>u</mi><mo>′</mo></msup><mrow><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> is introduced as the new unknown function and <i>u</i> is recovered using the quadrature. …”
Get full text
Article -
1090
DYNAMICS OF A GEOMETRICALLY AND PHYSICALLY NONLINEAR SENSITIVE ELEMENT OF A NANOELECTROMECHANICAL SENSOR IN THE FORM OF AN INHOMOGENEOUS NANOBEAM IN THE TEMPERATURE AND NOISE FIELD...
Published 2020-05-01“…Methods: variation methods, a second-order finite difference method for reducing the system of nonlinear partial differential equations to the Cauchy problem, the Newmark method for solving the Cauchy problem, the Birger method of variable elasticity parameters for solving a physically non-linear problem, the variation iteration method for obtaining an analytical solution of the two-dimensional heat equation. …”
Get full text
Article -
1091
Numerical Investigation of Double-Diffusive Convection in an Irregular Porous Cavity Subjected to Inclined Magnetic Field Using Finite Element Method
Published 2024-03-01“…Design/methodology/approach—After validating the results, the FEM (finite element method) is used to simulate the flow pattern, temperature variations, and concentration by solving the nonlinear partial differential equations with the modified Rayleigh number (10<sup>4</sup> ≤ <i>Ra</i> ≤ 10<sup>7</sup>), Darcy number (10<sup>−4</sup> ≤ <i>Da</i> ≤ 10<sup>−1</sup>), Lewis number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mn>0.1</mn><mo>≤</mo><mi>L</mi><mi>e</mi><mo>≤</mo><mn>10</mn><mo>)</mo></mrow></semantics></math></inline-formula>, and Hartmann number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced separators="|"><mrow><mn>0</mn><mo>≤</mo><mi>H</mi><mi>a</mi><mo>≤</mo><mn>40</mn></mrow></mfenced></mrow></semantics></math></inline-formula> as the dimensionless operating parameters. …”
Get full text
Article -
1092
-
1093
Hierarchies of the Korteweg–de Vries Equation Related to Complex Expansion and Perturbation
Published 2023-04-01“…A hierarchy is understood here as a family of nonlinear partial differential equations with a Lax pair with a common scattering operator. …”
Get full text
Article -
1094
Numerical Study of Heat and Mass Transfer for Williamson Nanofluid over Stretching/Shrinking Sheet along with Brownian and Thermophoresis Effects
Published 2022-08-01“…Employing the similarity transformations, the governing nonlinear Partial Differential Equations (PDEs) are converted into the Ordinary Differential Equations (ODEs). …”
Get full text
Article -
1095
Steady Squeezing Flow of Magnetohydrodynamics Hybrid Nanofluid Flow Comprising Carbon Nanotube-Ferrous Oxide/Water with Suction/Injection Effect
Published 2022-02-01“…The governing equations of the proposed hybrid nanoliquid model are formulated through highly nonlinear partial differential equations (PDEs) including momentum equation, energy equation, and the magnetic field equation. …”
Get full text
Article -
1096
Methods for Constructing Complex Solutions of Nonlinear PDEs Using Simpler Solutions
Published 2021-02-01“…This paper describes a number of simple but quite effective methods for constructing exact solutions of nonlinear partial differential equations that involve a relatively small amount of intermediate calculations. …”
Get full text
Article -
1097
Design of intelligent control system and its application on fabricated conveyor belt grain dryer
Published 2011“…As a result, the mathematical models developed for these systems consist of sets of highly complex and nonlinear partial differential equations (PDEs) which require highly complicated numerical techniques to solve them. …”
Get full text
Thesis -
1098
Stability of the second order partial differential equations
Published 2011-01-01“…</p> <p>In this paper, by using Banach's contraction principle, we prove the stability of nonlinear partial differential equations of the following forms:</p> <p><display-formula><m:math name="1029-242X-2011-81-i1" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:mrow> <m:mfenced separators="" open="{" close=""> <m:mrow> <m:mtable class="gathered"> <m:mtr> <m:mtd> <m:msub> <m:mrow> <m:mi>y</m:mi> </m:mrow> <m:mrow> <m:mi>x</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-rel">=</m:mo> <m:mi>f</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>t</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>y</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-punc">,</m:mo> </m:mtd> </m:mtr> <m:mtr> <m:mtd> <m:mi>a</m:mi> <m:msub> <m:mrow> <m:mi>y</m:mi> </m:mrow> <m:mrow> <m:mi>x</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-bin">+</m:mo> <m:mi>b</m:mi> <m:msub> <m:mrow> <m:mi>y</m:mi> </m:mrow> <m:mrow> <m:mi>t</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-rel">=</m:mo> <m:mi>f</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>t</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>y</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-punc">,</m:mo> </m:mtd> </m:mtr> <m:mtr> <m:mtd> <m:mi>p</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:msub> <m:mrow> <m:mi>y</m:mi> </m:mrow> <m:mrow> <m:mi>x</m:mi> <m:mi>t</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-bin">+</m:mo> <m:mi>q</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:msub> <m:mrow> <m:mi>y</m:mi> </m:mrow> <m:mrow> <m:mi>t</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-bin">+</m:mo> <m:msub> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>t</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:msub> <m:mrow> <m:mi>y</m:mi> </m:mrow> <m:mrow> <m:mi>x</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-bin">-</m:mo> <m:msub> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>x</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:msub> <m:mrow> <m:mi>y</m:mi> </m:mrow> <m:mrow> <m:mi>t</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-rel">=</m:mo> <m:mi>f</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>t</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>y</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-punc">,</m:mo> </m:mtd> </m:mtr> <m:mtr> <m:mtd> <m:mi>p</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:msub> <m:mrow> <m:mi>y</m:mi> </m:mrow> <m:mrow> <m:mi>x</m:mi> <m:mi>x</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-bin">+</m:mo> <m:mi>q</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:msub> <m:mrow> <m:mi>y</m:mi> </m:mrow> <m:mrow> <m:mi>x</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-rel">=</m:mo> <m:mi>f</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>t</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>y</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-punc">.…”
Get full text
Article