Showing 1 - 20 results of 32 for search '"Omega Rho"', query time: 0.56s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4

    Higgs boson decays $$h\rightarrow Z \gamma $$ h → Z γ and $$h\rightarrow m_V Z$$ h → m V Z in the $$U(1)_X$$ U ( 1 ) X SSM by Xi Wang, Shu-Min Zhao, Tong-Tong Wang, Lu-Hao Su, Wei Li, Ze-Ning Zhang, Zhong-Jun Yang, Tai-Fu Feng

    Published 2022-11-01
    “…Abstract We present a detailed analysis of the Higgs boson decays $$h\rightarrow Z \gamma $$ h → Z γ and $$h\rightarrow m_V Z$$ h → m V Z in the $$U(1)_X$$ U ( 1 ) X SSM, with $$m_V$$ m V denoting one of the mesons ( $$\omega ,\rho ,\phi ,J/{\psi },\Upsilon $$ ω , ρ , ϕ , J / ψ , Υ ). …”
    Get full text
    Article
  5. 5

    Validation of energy conditions in wormhole geometry within viable f(R) gravity by Gauranga C. Samanta, Nisha Godani

    Published 2019-07-01
    “…Using the shape function $$b(r)=r_0\big (\frac{r}{r_0}\big )^\gamma $$ b(r)=r0(rr0)γ , where $$0<\gamma <1$$ 0<γ<1 , and the equation of state $$p_r=\omega \rho $$ pr=ωρ , the f(R) function is derived and the field equations are solved. …”
    Get full text
    Article
  6. 6

    Das Bild des «anderen» im Werk von Niketas Choniates. Das Beispiel von Peter und Asen by Theoni BASEU-BARABAS

    Published 1996-09-01
    “…&Omicron; &beta;&upsilon;&zeta;&alpha;&nu;&tau;&iota;&nu;ό&sigmaf; &iota;&sigma;&tau;&omicron;&rho;&iota;&kappa;ό&sigmaf; &kappa;&alpha;&iota; &rho;ή&tau;&omicron;&rho;&alpha;&sigmaf; &epsilon;ί&nu;&alpha;&iota; &epsilon;&pi;ί&sigma;&eta;&sigmaf; &pi;&rho;ό&theta;&upsilon;&mu;&omicron;&sigmaf; &nu;&alpha; &alpha;&nu;&alpha;&gamma;&nu;&omega;&rho;ί&sigma;&epsilon;&iota; &theta;&epsilon;&tau;&iota;&kappa;έ&sigmaf; &iota;&delta;&iota;ό&tau;&eta;&tau;&epsilon;&sigmaf; &sigma;&tau;&omicron;&nu; &beta;&omicron;ύ&lambda;&gamma;&alpha;&rho;&omicron; &alpha;&nu;&tau;ί&pi;&alpha;&lambda;&omicron; &tau;&omicron;&upsilon; &kappa;&alpha;&iota; &nu;&alpha; &kappa;&alpha;&tau;&eta;&gamma;&omicron;&rho;ή&sigma;&epsilon;&iota; &tau;&omicron;&nu; &beta;&upsilon;&zeta;&alpha;&nu;&tau;&iota;&nu;ό &alpha;&upsilon;&tau;&omicron;&kappa;&rho;ά&tau;&omicron;&rho;&alpha; &gamma;&iota;&alpha; &alpha;&delta;&rho;ά&nu;&epsilon;&iota;&alpha; &kappa;&alpha;&iota; &omicron;&lambda;&iota;&gamma;&omega;&rho;ί&alpha;.…”
    Get full text
    Article
  7. 7

    A Passage of the 'Barbarograeca᾽ Metaphrase of Niketas Choniates᾽ Chronike Diegesis. Retranslated or Revised? by John DAVIS

    Published 1996-09-01
    “…Davis</p><p>&nbsp;Ἕ&nu;&alpha; &chi;&omega;&rho;ί&omicron; ἀ&pi;ὸ &tau;ὴ &lambda;&epsilon;&gamma;ό&mu;&epsilon;&nu;&eta; &laquo;&delta;&eta;&mu;ώ&delta;&eta;&raquo; &mu;&epsilon;&tau;ά&phi;&rho;&alpha;&sigma;&eta; &tau;ῆ&sigmaf; <em>&Chi;&rho;&omicron;&nu;&iota;&kappa;</em><em>ῆ</em><em>&sigmaf; &Delta;&iota;&eta;&gamma;ή&sigma;&epsilon;&omega;&sigmaf;</em> &tau;&omicron;ῦ &Nu;&iota;&kappa;ή&tau;&alpha; &Chi;&omega;&nu;&iota;ά&tau;&eta;: ἐ&pi;&alpha;&nu;&alpha;-&mu;&epsilon;&tau;ά&phi;&rho;&alpha;&sigma;&eta; ἤ ἁ&pi;&lambda;ῶ&sigmaf; &delta;&iota;ό&rho;&theta;&omega;&sigma;&eta;; </p><p>&Tau;ὸ &chi;&omega;&rho;ί&omicron; &pi;&omicron;ὺ &sigma;&upsilon;&zeta;&eta;&tau;&epsilon;ῖ&tau;&alpha;&iota; ἐ&delta;ῶ ἀ&pi;&omicron;&tau;&epsilon;&lambda;&epsilon;ῖ ἰ&delta;&iota;ά&zeta;&omicron;&upsilon;&sigma;&alpha; &pi;&epsilon;&rho;ί&pi;&tau;&omega;&sigma;&eta; &sigma;&tau;ὸ &sigma;ύ&nu;&omicron;&lambda;&omicron; &tau;ῆ&sigmaf; &lambda;&epsilon;&gamma;&omicron;&mu;έ&nu;&eta;&sigmaf; Barbarograeca (&laquo;&delta;&eta;&mu;ώ&delta;&omicron;&upsilon;&sigmaf;&raquo;) &mu;&epsilon;&tau;ά&phi;&rho;&alpha;&sigma;&eta;&sigmaf; &tau;ῆ&sigmaf; &Chi;&rho;&omicron;&nu;&iota;&kappa;ῆ&sigmaf; &Delta;&iota;&eta;&gamma;ή&sigma;&epsilon;&omega;&sigmaf; &tau;&omicron;ῦ &Nu;&iota;&kappa;ή&tau;&alpha; &Chi;&omega;&nu;&iota;ά&tau;&eta;: ἡ &chi;&epsilon;&iota;&rho;ό&gamma;&rho;&alpha;&phi;&eta; &pi;&alpha;&rho;ά&delta;&omicron;&sigma;&eta; &tau;&omicron;ῦ &kappa;&epsilon;&iota;&mu;έ&nu;&omicron;&upsilon; &alpha;ὐ&tau;&omicron;ῦ (Niketas-Metaphrase=<em>&Nu;</em>-<em>&Mu;</em>) &pi;&alpha;&rho;&omicron;&upsilon;&sigma;&iota;ά&zeta;&epsilon;&iota; &delta;ύ&omicron; &kappa;&lambda;ά&delta;&omicron;&upsilon;&sigmaf;, &omicron;ἱ ὁ&pi;&omicron;ῖ&omicron;&iota; &delta;ὲ&nu; &delta;&iota;&alpha;&phi;έ&rho;&omicron;&upsilon;&nu; &rho;&iota;&zeta;&iota;&kappa;ὰ &pi;&alpha;&rho;ὰ &mu;ό&nu;&omicron; &sigma;&tau;ὸ ὑ&pi;ὸ &sigma;&upsilon;&zeta;ή&tau;&eta;&sigma;&iota;&nu; &sigma;&eta;&mu;&epsilon;ῖ&omicron;.…”
    Get full text
    Article
  8. 8

    La pronoia d᾽Alexis Commène Raoul à Prévista by Lénos MAVROMMATIS

    Published 1999-09-01
    “…&Tau;&omicron; &chi;&omega;&rho;&iota;ό &alpha;&pi;&omicron;&tau;&epsilon;&lambda;&epsilon;ί&tau;&alpha;&iota; &alpha;&pi;ό 62 &laquo;&tau;&zeta;ά&kappa;&iota;&alpha;&raquo; &pi;&alpha;&rho;&omicron;ί&kappa;&omega;&nu;, &delta;&eta;&lambda;&alpha;&delta;ή 320 &psi;&upsilon;&chi;έ&sigmaf;. …”
    Get full text
    Article
  9. 9

    Τυμβωρῦχοι καὶ σκυλευτἐς νεκρῶν: Οι απόψεις του Νικολάου Καταφλώρον για τη ρητορική και τους ρήτορες στην Κωνσταντινούπολη του 12ου αιώνα... by Μαρίνα ΛΟΥΚΑΚΗ

    Published 2008-09-01
    “…&nbsp; <p>Marina Loukaki</p><p>&nbsp;&Tau;&upsilon;&mu;&beta;&omega;&rho;ῦ&chi;&omicron;&iota; and &sigma;&kappa;&upsilon;&lambda;&epsilon;&upsilon;&tau;ὲ&sigmaf;&nbsp; &nu;&epsilon;&kappa;&rho;ῶ&nu;: The views&nbsp; of Nicolaos Kataphloron on rhetoric and the rhetoricians in 12th century Constantinople</p><p>There were many factors that were conducive to the flourishing of rhetoric in Constantinople during the Comneni and Angeli era. …”
    Get full text
    Article
  10. 10

    Stability of initial-boundary value problem for quasilinear viscoelastic equations by Kun-Peng Jin, Jin Liang, Ti-Jun Xiao

    Published 2020-07-01
    “…We investigate the stability of the initial-boundary value problem for the quasilinear viscoelastic equation $$\displaylines{ |u_t|^{\rho}u_{tt}-\Delta u_{tt}-\Delta u+\int_0^tg(t-s)\Delta u(s)ds=0, \quad \text{in }\Omega\times(0,+\infty),\cr u=0,\quad \text{in }\partial\Omega\times(0,+\infty),\cr u(\cdot, 0)=u_0(x),\quad u_t(\cdot, 0)=u_1(x), \quad \text{in }\Omega, }$$ where $\Omega$ is a bounded domain of $\mathbb{R}^{n}\; (n\geq 1)$ with smooth boundary $\partial\Omega$, $\rho$ is a positive real number, and g(t) is the relaxation function. …”
    Get full text
    Article
  11. 11

    The Location of the Monastery of Chryse Petra by Eleonora KOUNTOURA-GALAKE

    Published 1999-09-01
    “…&nbsp; <p>Ἐ&lambda;&epsilon;&omega;&nu;ό&rho;&alpha; &Kappa;&omicron;&upsilon;&nu;&tau;&omicron;ύ&rho;&alpha;-&Gamma;&alpha;&lambda;ά&kappa;&eta;</p><p>&nbsp;Ἡ &tau;&omicron;&pi;&omicron;&theta;&epsilon;&sigma;ί&alpha; &tau;ῆ&sigmaf; &mu;&omicron;&nu;ῆ&sigmaf; &tau;ῆ&sigmaf; &Chi;&rho;&upsilon;&sigma;ῆ&sigmaf; &Pi;έ&tau;&rho;&alpha;&sigmaf;</p><p>Ἡ &mu;&omicron;&nu;ὴ &tau;ῆ&sigmaf; &Chi;&rho;&upsilon;&sigma;ῆ&sigmaf; &Pi;έ&tau;&rho;&alpha;&sigmaf;, ἀ&phi;&iota;&epsilon;&rho;&omega;&mu;έ&nu;&eta; &sigma;&tau;ὸ&nu; &Pi;&rho;&omicron;&phi;ή&tau;&eta; Ἠ&lambda;ί&alpha;, &epsilon;ἶ&nu;&alpha;&iota; &gamma;&nu;&omega;&sigma;&tau;ὴ ἀ&pi;ὸ &tau;ὶ&sigmaf; &delta;&omega;&rho;&epsilon;ὲ&sigmaf; &tau;&omicron;ῦ &alpha;ὐ&tau;&omicron;&kappa;&rho;ά&tau;&omicron;&rho;&alpha; &Rho;&omega;&mu;&alpha;&nu;&omicron;ῦ &Lambda;&alpha;&kappa;&alpha;&pi;&eta;&nu;&omicron;ῦ &kappa;&alpha;ὶ &mu;&alpha;&rho;&tau;&upsilon;&rho;&epsilon;ῖ&tau;&alpha;&iota; &sigma;&tau;ὸ&nu; &Beta;ί&omicron; &tau;&omicron;ῦ ὁ&sigma;ί&omicron;&upsilon; &Nu;ί&kappa;&omega;&nu;&omicron;&sigmaf; &tau;&omicron;ῦ &Mu;&epsilon;&tau;&alpha;&nu;&omicron;&epsilon;ῖ&tau;&epsilon; &kappa;&alpha;ὶ &sigma;&tau;ὸ&nu; &Beta;ί&omicron; &tau;&omicron;ῦ ὁ&sigma;ί&omicron;&upsilon; &Delta;&omega;&rho;&omicron;&theta;έ&omicron;&upsilon; &tau;&omicron;ῦ &Nu;έ&omicron;&upsilon;. …”
    Get full text
    Article
  12. 12

    On the existence and stability of traversable wormhole solutions in modified theories of gravity by Oleksii Sokoliuk, Alexander Baransky

    Published 2021-08-01
    “…We solve numerically the Einstein field equations and we derive the suitable shape function for each MOG of our consideration by applying the equation of state $$p_t=\omega \rho $$ p t = ω ρ . Furthermore, we investigate the null energy condition, the weak energy condition, and the strong energy condition with the suitable shape function b(r). …”
    Get full text
    Article
  13. 13

    Black holes surrounded by Einstein clusters as models of dark matter fluid by Kimet Jusufi

    Published 2023-02-01
    “…Abstract We construct a novel class of spherically symmetric and asymptotically flat black holes and naked singularities surrounded by anisotropic dark matter fluid with the equation of state (EoS) of the form $$P_t=\omega \rho $$ P t = ω ρ . We assume that dark matter is made of weakly interacting particles orbiting around the supermassive black hole in the galactic center and the dark matter halo is formed by means of Einstein clusters having only tangential pressure. …”
    Get full text
    Article
  14. 14

    Possible existence of traversable wormhole in Finsler–Randers geometry by Krishna Pada Das, Ujjal Debnath

    Published 2023-09-01
    “…Furthermore, each case is analyzed by dividing it into two models such as (i) Model-1 (for general anisotropic EoS $$p_{t}=\chi p_{r}$$ p t = χ p r ) and (ii) Model-2 (for linear phantom-like EoS $$p_{r} + \omega \rho =0$$ p r + ω ρ = 0 ). In each model of three cases, we have verified the validity of the wormhole solution in F–R geometry by considering null, weak, strong and dominant energy conditions. …”
    Get full text
    Article
  15. 15

    Charmed $$\Omega _c$$ Ω c weak decays into $$\Omega $$ Ω in the light-front quark model by Yu-Kuo Hsiao, Ling Yang, Chong-Chung Lih, Shang-Yuu Tsai

    Published 2020-11-01
    “…We also predict $${{\mathcal {B}}}_\rho \equiv {{\mathcal {B}}}(\Omega _c^0\rightarrow \Omega ^-\rho ^+)=(14.4\pm 0.4)\times 10^{-3}$$ B ρ ≡ B ( Ω c 0 → Ω - ρ + ) = ( 14.4 ± 0.4 ) × 10 - 3 and $${{\mathcal {B}}}_e\equiv {{\mathcal {B}}}(\Omega _c^0\rightarrow \Omega ^-e^+\nu _e)=(5.4\pm 0.2)\times 10^{-3}$$ B e ≡ B ( Ω c 0 → Ω - e + ν e ) = ( 5.4 ± 0.2 ) × 10 - 3 . …”
    Get full text
    Article
  16. 16

    Perdikas von Ephesos und seine Beschreibung Jerusalems: die heiligen Stätten gesehen von einem Byzantiner des 14. Jhs. by Theoni BASEU-BARABAS

    Published 1997-09-01
    “…</p><p>&Sigma;&tau;&omicron; έ&mu;&mu;&epsilon;&tau;&rho;&omicron; &kappa;&epsilon;ί&mu;&epsilon;&nu;&omicron; &tau;&omicron;&upsilon;, &omicron; &Pi;&epsilon;&rho;&delta;ί&kappa;&alpha;&sigmaf; &mu;&epsilon;&tau;&alpha;&phi;έ&rho;&epsilon;&iota;, &pi;&rho;&omicron;&sigmaf; &chi;ά&rho;&iota;&nu; ό&sigma;&omega;&nu; &delta;&epsilon;&nu; έ&chi;&omicron;&upsilon;&nu; &tau;&eta; &delta;&upsilon;&nu;&alpha;&tau;ό&tau;&eta;&tau;&alpha; &nu;&alpha; &epsilon;&pi;&iota;&sigma;&kappa;&epsilon;&phi;&theta;&omicron;ύ&nu; &tau;&omicron;&upsilon;&sigmaf; &Alpha;&gamma;ί&omicron;&upsilon;&sigmaf; &Tau;ό&pi;&omicron;&upsilon;&sigmaf;, &tau;&iota;&sigmaf; &epsilon;&nu;&tau;&upsilon;&pi;ώ&sigma;&epsilon;&iota;&sigmaf; &tau;&omicron;&upsilon; &alpha;&pi;ό &tau;&omicron; &pi;&rho;&omicron;&sigma;&kappa;ύ&nu;&eta;&mu;&alpha; &tau;&omicron;&upsilon; &sigma;&tau;&alpha; &Iota;&epsilon;&rho;&omicron;&sigma;ό&lambda;&upsilon;&mu;&alpha; &kappa;&alpha;&iota; &tau;&alpha; &pi;&epsilon;&rho;ί&chi;&omega;&rho;&alpha;. &Gamma;&iota;&alpha; &tau;&omicron;&nu; &lambda;ό&gamma;&omicron; &alpha;&upsilon;&tau;ό &pi;&rho;&omicron;&chi;&omega;&rho;&epsilon;ί &sigma;&epsilon; &sigma;&upsilon;&sigma;&tau;&eta;&mu;&alpha;&tau;&iota;&kappa;ή &kappa;&alpha;&tau;&alpha;&gamma;&rho;&alpha;&phi;ή &tau;&omega;&nu; &iota;&epsilon;&rho;ώ&nu; &chi;ώ&rho;&omega;&nu;, &tau;&omicron;&upsilon;&sigmaf; &omicron;&pi;&omicron;ί&omicron;&upsilon;&sigmaf; &epsilon;&nu;&tau;ά&sigma;&sigma;&epsilon;&iota; &sigma;&tau;&eta;&nu; &pi;&alpha;&rho;ά&delta;&omicron;&sigma;&eta; &tau;&eta;&sigmaf; &Pi;&alpha;&lambda;&alpha;&iota;ά&sigmaf; &kappa;&alpha;&iota; &tau;&eta;&sigmaf; &Kappa;&alpha;&iota;&nu;ή&sigmaf; &Delta;&iota;&alpha;&theta;ή&kappa;&eta;&sigmaf;, &pi;&alpha;&rho;&epsilon;&mu;&beta;ά&lambda;&lambda;&omicron;&nu;&tau;&alpha;&sigmaf; ό&mu;&omega;&sigmaf; &kappa;&alpha;&iota; &tau;&iota;&sigmaf; &pi;&rho;&omicron;&sigma;&omega;&pi;&iota;&kappa;έ&sigmaf; &delta;&iota;&alpha;&pi;&iota;&sigma;&tau;ώ&sigma;&epsilon;&iota;&sigmaf; &tau;&omicron;&upsilon; &sigma;&chi;&epsilon;&tau;&iota;&kappa;ά &mu;&epsilon; &tau;&eta;&nu; &kappa;&alpha;&tau;ά&sigma;&tau;&alpha;&sigma;&eta; &epsilon;&rho;ή&mu;&omega;&sigma;&eta;&sigmaf; &omicron;&rho;&iota;&sigma;&mu;έ&nu;&omega;&nu; &alpha;&pi;ό &alpha;&upsilon;&tau;&omicron;ύ&sigmaf; ή &tau;&eta;&nu; &upsilon;&pi;&alpha;&gamma;&omega;&gamma;ή &tau;&omicron;&upsilon;&sigmaf; &sigma;&tau;&omicron;&upsilon;&sigmaf; &mu;&omicron;&upsilon;&sigma;&omicron;&upsilon;&lambda;&mu;ά&nu;&omicron;&upsilon;&sigmaf; &kappa;&upsilon;&rho;ί&alpha;&rho;&chi;&omicron;&upsilon;&sigmaf; &tau;&eta;&sigmaf; &pi;&epsilon;&rho;&iota;&omicron;&chi;ή&sigmaf;. …”
    Get full text
    Article
  17. 17

    Reisende und Reisenliteratur im byzantinischen Reich by Andreas KÜLZER

    Published 2008-09-01
    “…&Omicron;&iota; &delta;&iota;&eta;&gamma;ή&sigma;&epsilon;&iota;&sigmaf; &kappa;&alpha;&iota; &pi;&alpha;&rho;&alpha;&tau;&eta;&rho;ή&sigma;&epsilon;&iota;&sigmaf; &pi;&omicron;&upsilon; έ&gamma;&iota;&nu;&alpha;&nu; &alpha;&pi;ό &sigma;&tau;&rho;&alpha;&tau;&iota;ώ&tau;&epsilon;&sigmaf;, &nu;&alpha;&upsilon;&tau;&iota;&kappa;&omicron;ύ&sigmaf;, &alpha;&iota;&chi;&mu;&alpha;&lambda;ώ&tau;&omicron;&upsilon;&sigmaf;, &tau;&sigma;&iota;&gamma;&gamma;ά&nu;&omicron;&upsilon;&sigmaf; &kappa;&alpha;&iota; ά&lambda;&lambda;&alpha; &mu;έ&lambda;&eta; ";;&pi;&epsilon;&rho;&iota;&theta;&omega;&rho;&iota;&alpha;&kappa;ώ&nu;";; &omicron;&mu;ά&delta;&omega;&nu;, ό&pi;&omega;&sigmaf; &alpha;&pi;ό &iota;&epsilon;&rho;ό&delta;&omicron;&upsilon;&lambda;&epsilon;&sigmaf;, &epsilon;ί&nu;&alpha;&iota; &sigma;ή&mu;&epsilon;&rho;&alpha; &epsilon;&lambda;ά&chi;&iota;&sigma;&tau;&alpha; &gamma;&nu;&omega;&sigma;&tau;έ&sigmaf; &kappa;&alpha;&iota; έ&chi;&omicron;&upsilon;&nu; &delta;&iota;&alpha;&sigma;&omega;&theta;&epsilon;ί, &delta;&iota;ά&sigma;&pi;&alpha;&rho;&tau;&epsilon;&sigmaf; &kappa;&alpha;&iota; &chi;&omega;&rho;ί&sigmaf; &tau;&eta;&nu; &alpha;&mu;&epsilon;&sigma;ό&tau;&eta;&tau;&alpha; &tau;&omicron;&upsilon;&sigmaf;, &mu;έ&sigma;&alpha; &sigma;&epsilon; ά&lambda;&lambda;&alpha; &lambda;&omicron;&gamma;&omicron;&tau;&epsilon;&chi;&nu;&iota;&kappa;ά &epsilon;ί&delta;&eta;, ό&pi;&omega;&sigmaf; &iota;&sigma;&tau;&omicron;&rho;&iota;&kappa;έ&sigmaf; &pi;&epsilon;&rho;&iota;&gamma;&rho;&alpha;&phi;έ&sigmaf; ή &mu;&upsilon;&theta;&iota;&sigma;&tau;&omicron;&rho;ή&mu;&alpha;&tau;&alpha;.…”
    Get full text
    Article
  18. 18

    Existence and uniqueness of solutions for coupled system of fractional differential equations involving proportional delay by means of topological degree theory by Anwar Ali, Muhammad Sarwar, Mian Bahadur Zada, Thabet Abdeljawad

    Published 2020-09-01
    “…Abstract In this manuscript, we obtain sufficient conditions required for the existence of solution to the following coupled system of nonlinear fractional order differential equations: D γ ω ( ℓ ) = F ( ℓ , ω ( λ ℓ ) , υ ( λ ℓ ) ) , D δ υ ( ℓ ) = F ‾ ( ℓ , ω ( λ ℓ ) , υ ( λ ℓ ) ) , $$ \begin{gathered} D^{\gamma}\omega(\ell)= \mathcal{F} \bigl( \ell,\omega(\lambda\ell), \upsilon(\lambda\ell) \bigr), \\ D^{\delta}\upsilon(\ell)=\mathcal{\overline{F}} \bigl(\ell,\omega ( \lambda\ell), \upsilon(\lambda\ell) \bigr), \end{gathered} $$ with fractional integral boundary conditions a 1 ω ( 0 ) − b 1 ω ( η ) − c 1 ω ( 1 ) = 1 Γ ( γ ) ∫ 0 1 ( 1 − ρ ) γ − 1 ϕ ( ρ , ω ( ρ ) ) d ρ and a 2 υ ( 0 ) − b 2 υ ( ξ ) − c 2 υ ( 1 ) = 1 Γ ( δ ) ∫ 0 1 ( 1 − ρ ) δ − 1 ψ ( ρ , υ ( ρ ) ) d ρ , $$ \begin{gathered} \mathfrak{a}_{1}\omega(0)- \mathfrak{b}_{1}\omega(\eta)-\mathfrak {c}_{1}\omega(1)= \frac{1}{\varGamma(\gamma)} \int_{0}^{1}(1-\rho )^{\gamma-1} \phi \bigl( \rho, \omega(\rho) \bigr)\, d\rho\quad\text{and} \\ \mathfrak{a}_{2}\upsilon(0)-\mathfrak{b}_{2} \upsilon (\xi)-\mathfrak{c}_{2}\upsilon(1)=\frac{1}{\varGamma(\delta)} \int _{0}^{1}(1-\rho)^{\delta-1} \psi \bigl( \rho, \upsilon(\rho) \bigr) \,d\rho, \end{gathered} $$ where ℓ ∈ Z = [ 0 , 1 ] $\ell\in\mathfrak{Z}=[0,1]$ , γ , δ ∈ ( 0 , 1 ] $\gamma, \delta\in(0,1]$ , 0 < λ < 1 $0<\lambda<1$ , D denotes the Caputo fractional derivative (in short CFD), F , F ‾ : Z × R × R → R $\mathcal{F}, \mathcal{\overline{F}}: \mathfrak{Z}\times \mathfrak{R}\times\mathfrak{R} \rightarrow\mathfrak{R}$ and ϕ , ψ : Z × R → R $\phi , \psi:\mathfrak{Z}\times\mathfrak{R}\rightarrow\mathfrak{R}$ are continuous functions. …”
    Get full text
    Article
  19. 19

    Τοπογραφικά του αθηναϊκού πεδίου κατά τη μέση βυζαντινή περίοδο (9ος-12ος αιώνας) by Γεώργιος Νέστορος ΠΑΛΛΗΣ

    Published 2014-01-01
    “…&Sigma;&chi;&omicron;&lambda;&iota;ά&zeta;&omicron;&nu;&tau;&alpha;&iota; &zeta;&eta;&tau;ή&mu;&alpha;&tau;&alpha; ό&pi;&omega;&sigmaf; &eta; &chi;&omega;&rho;&omicron;&theta;έ&tau;&eta;&sigma;&eta; &kappa;&alpha;&iota; &eta; &pi;&omicron;&lambda;&epsilon;&omicron;&delta;&omicron;&mu;&iota;&kappa;ή &omicron;&rho;&gamma;ά&nu;&omega;&sigma;&eta; &tau;&omega;&nu; &mu;&iota;&kappa;&rho;ώ&nu; &pi;&epsilon;&rho;&iota;&phi;&epsilon;&rho;&epsilon;&iota;&alpha;&kappa;ώ&nu; &omicron;&iota;&kappa;&iota;&sigma;&mu;ώ&nu;, &omicron;&iota; &pi;&alpha;&rho;&alpha;&gamma;&omega;&gamma;&iota;&kappa;έ&sigmaf; &delta;&rho;&alpha;&sigma;&tau;&eta;&rho;&iota;ό&tau;&eta;&tau;&epsilon;&sigmaf;, &eta; &sigma;&upsilon;&mu;&beta;&omicron;&lambda;ή &tau;&omicron;&upsilon; &mu;&omicron;&nu;&alpha;&chi;&iota;&sigma;&mu;&omicron;ύ, &eta; &kappa;&omicron;&sigma;&mu;&iota;&kappa;ή &kappa;&alpha;&iota; &eta; &epsilon;&kappa;&kappa;&lambda;&eta;&sigma;&iota;&alpha;&sigma;&tau;&iota;&kappa;ή &alpha;&rho;&chi;&iota;&tau;&epsilon;&kappa;&tau;&omicron;&nu;&iota;&kappa;ή.…”
    Get full text
    Article
  20. 20

    L᾽«unilinguisme» officiel de Constantinople byzantine (VIIe-XIIe s.) by Nikos OIKONOMIDES

    Published 1999-09-01
    “…&Omicron;&iota; &epsilon;&lambda;&lambda;&eta;&nu;ό&gamma;&lambda;&omega;&sigma;&sigma;&omicron;&iota; &kappa;ά&tau;&omicron;&iota;&kappa;&omicron;&iota; &tau;&omicron;&upsilon; &kappa;έ&nu;&tau;&rho;&omicron;&upsilon; &theta;&epsilon;&omega;&rho;&omicron;ύ&sigma;&alpha;&nu; ό&tau;&iota; &omicron;&iota; ά&lambda;&lambda;&omicron;&iota; ό&phi;&epsilon;&iota;&lambda;&alpha;&nu; &nu;&alpha; &gamma;&nu;&omega;&rho;ί&zeta;&omicron;&upsilon;&nu; &tau;&eta;&nu; &epsilon;&pi;ί&sigma;&eta;&mu;&eta; &gamma;&lambda;ώ&sigma;&sigma;&alpha; &tau;&eta;&sigmaf; &alpha;&upsilon;&tau;&omicron;&kappa;&rho;&alpha;&tau;&omicron;&rho;ί&alpha;&sigmaf;, &delta;&eta;&lambda;&alpha;&delta;ή &tau;&alpha; &Epsilon;&lambda;&lambda;&eta;&nu;&iota;&kappa;ά, &epsilon;&phi;ό&sigma;&omicron;&nu; έ&rho;&chi;&omicron;&nu;&tau;&alpha;&nu; &sigma;' &alpha;&upsilon;&tau;ή&nu;. …”
    Get full text
    Article