Showing 1,561 - 1,580 results of 2,055 for search '"scintillator"', query time: 0.11s Refine Results
  1. 1561
  2. 1562

    Convenient and Sensitive Measurement of Lactosylceramide Synthase Activity Using Deuterated Glucosylceramide and Mass Spectrometry by Michele Dei Cas, Linda Montavoci, Sara Casati, Nadia Malagolini, Fabio Dall’Olio, Marco Trinchera

    Published 2023-03-01
    “…Lactosylceramide synthase activity was classically determined in vitro by a method based on the incorporation of radiolabeled galactose followed by the chromatographic separation and quantitation of the product by liquid scintillation counting. Here, we used deuterated glucosylceramide as the acceptor substrate and quantitated the deuterated lactosylceramide product by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). …”
    Get full text
    Article
  3. 1563

    Solution for Self-Interference of NOMA-Based Wireless Optical Communication System in Underwater Turbulence Environment by Yanjun Liang, Hongxi Yin, Lianyou Jing, Xiuyang Ji, Jianying Wang

    Published 2023-01-01
    “…In addition, the proposed GSPA algorithm fully takes into account the light-intensity scintillation caused by the ocean turbulence, which not only significantly reduces the average BER of the NOMA system, but also accelerates the convergence rate.…”
    Get full text
    Article
  4. 1564

    Tritium extraction in aluminum metal by heating method without melting by Ki Joon Kang, Jaehoon Byun, Hee Reyoung Kim

    Published 2022-02-01
    “…The extracted tritium was analyzed by using a liquid scintillation counter (LSC); the sample thicknesses were 0.4 and 2 mm. …”
    Get full text
    Article
  5. 1565

    PbWO<sub>4</sub> Acoustic Properties Measurement by Laser Ultrasonics with the Aim of Optical Damage Recovery by Luigi Montalto, Fabrizio Davì, Valery Dormenev, Nicola Paone, Daniele Rinaldi

    Published 2023-03-01
    “…Calculations confirmed that the majority of the energy has been absorbed in the samples. Since in scintillating crystals the radiation damage leads to a decrease in the optical transmission, the paper formulates the hypothesis that the laser energy absorbed can sustain recovery of the optical transmittance properties. …”
    Get full text
    Article
  6. 1566

    Thin Films and Glass–Ceramic Composites of Huntite Borates Family: A Brief Review by Elena A. Volkova, Daniil A. Naprasnikov, Nikolay I. Leonyuk

    Published 2020-06-01
    “…The last decade’s enhanced interest is being conducted towards epitaxial layers because of the availability of other possible applications, for instance, as scintillators, visible emitting phosphors or optical waveguides and waveguide lasers. …”
    Get full text
    Article
  7. 1567

    Intra-Day Variability Observations of Two Dozens of Blazars at 4.8 GHz by Xiang Liu, Xin Wang, Ning Chang, Jun Liu, Lang Cui, Xiaofeng Yang, Thomas P. Krichbaum

    Published 2021-01-01
    “…The IDV at centimeter-wavelength is believed to be predominately caused by the scintillation of blazar emission through the local interstellar medium in a few hundreds parsecs away from Sun. …”
    Get full text
    Article
  8. 1568

    A Multi-Rotor Drone Micro-Motion Parameter Estimation Method Based on CVMD and SVD by Degui Yang, Jin Li, Buge Liang, Xing Wang, Zhenghong Peng

    Published 2022-07-01
    “…Finally, by integrating CVMD frequency domain segmentation and SVD time domain positioning, the reconstruction of multi-rotor target scintillation at different speeds is realized, and the micro-motion parameters of rotor blades are successfully estimated. …”
    Get full text
    Article
  9. 1569

    A Narrow Optical Pulse Emitter Based on LED: NOPELED by Diego Real, David Calvo, Antonio Díaz, Francisco Salesa Greus, Agustín Sánchez Losa

    Published 2022-10-01
    “…NOPELED, which also has low cost and simple operation, can be operated remotely, making it appropriate for either different physics experiments needing in-place light sources such as astrophysical neutrino detectors using photo-multipliers or positron emission tomography devices using scintillation counters, or, beyond physics, applications needing short pulses of light such as protein fluorescence or chemodetection of heavy metals.…”
    Get full text
    Article
  10. 1570

    Design and Construction of a Multi-Channel Analyzer (MCA) with Communication Capability Through USB by P Horriyat Pajooh, Y Vosoughi, S. R Hadian Amraei

    Published 2014-02-01
    “…The overall system performance was tested using a Na(Tl) crystal coupled PMT scintillation detector, and gamma standard radioactive sources of Cs-137 and Co-60. …”
    Get full text
    Article
  11. 1571

    All-optical observation of giant spin transparency at the topological insulator BiSbTe1.5Se1.5/Co20Fe60B20 interface by Suchetana Mukhopadhyay, Pratap Kumar Pal, Subhadeep Manna, Chiranjib Mitra, Anjan Barman

    Published 2023-10-01
    “…For BSTS thicknesses far exceeding the spin diffusion length, in the so-called “perfect spin sink” regime, we obtain an interfacial spin transparency as high as 0.9, promoting such systems as scintillating candidates for spin-orbitronic devices.…”
    Get full text
    Article
  12. 1572

    Improved TPB-coated light guides for liquid argon TPC light detection systems by Moss, Z., Conrad, J.M., Jones, B.J.P., Moon, J., Toups, M., Bugel, Leonard G., Collin, Gabriel Lewis, Wongjirad, Taritree

    Published 2017
    “…Scintillation light produced in liquid argon (LAr) must be shifted from 128 nm to visible wavelengths in light detection systems used for liquid argon time-projection chambers (LArTPCs). …”
    Get full text
    Get full text
    Get full text
    Get full text
    Article
  13. 1573

    Characterization of cubic Li $$_{2}$$ 2... by Armatol, A., Armengaud, E., Armstrong, W., Augier, C., Avignone, F. T, Azzolini, O., Barabash, A., Bari, G., Barresi, A., Baudin, D., Bellini, F., Benato, G., Beretta, M., Bergé, L., Biassoni, M., Billard, J., Boldrini, V., Branca, A., Brofferio, C., Bucci, C.

    Published 2021
    “…We assessed the identification of $$\alpha $$ α particles with and without a reflecting foil that enhances the scintillation light collection efficiency, proving that the baseline design of CUPID already ensures a complete suppression of this $$\alpha $$ α -induced background contribution. …”
    Get full text
    Article
  14. 1574

    Characterization of cubic Li$$_{2}$$$$^{100}$$MoO$$_4$$ crystals for the CUPID experiment by Armatol, A., Armengaud, E., Armstrong, W., Augier, C., Avignone, F. T., Azzolini, O., Barabash, A., Bari, G., Barresi, A., Baudin, D., Bellini, F., Benato, G., Beretta, M., Bergé, L., Biassoni, M., Billard, J., Boldrini, V., Branca, A., Brofferio, C., Bucci, C., Camilleri, J., Capelli, S., Cappelli, L., Cardani, L., Carniti, P., Casali, N., Cazes, A., Celi, E., Chang, C., Chapellier, M., Charrier, A., Chiesa, D., Clemenza, M., Colantoni, I., Collamati, F., Copello, S., Cremonesi, O., J. Creswick, R., Cruciani, A., D’Addabbo, A., D’Imperio, G., Dafinei, I., A. Danevich, F., de Combarieu, M., De Jesus, M., de Marcillac, P., Dell’Oro, S., Di Domizio, S., Dompè, V., Drobizhev, A., Dumoulin, L., Fantini, G., Faverzani, M., Ferri, E., Ferri, F., Ferroni, F., Figueroa-Feliciano, E., Formaggio, J., Franceschi, A., Fu, C., Fu, S., Fujikawa, B. K., Gascon, J., Giachero, A., Gironi, L., Giuliani, A., Gorla, P., Gotti, C., Gras, P., Gros, M., Gutierrez, T. D., Han, K., Hansen, E. V., Heeger, K. M., Helis, D. L., Huang, H. Z., Huang, R. G., Imbert, L., Johnston, J., Juillard, A., Karapetrov, G., Keppel, G., Khalife, H., Kobychev, V. V., Kolomensky, Yu. G., Konovalov, S., Liu, Y., Loaiza, P., Ma, L., Madhukuttan, M., Mancarella, F., Mariam, R., Marini, L., Marnieros, S., Martinez, M., Maruyama, R. H., Mauri, B., Mayer, D., Mei, Y., Milana, S., Misiak, D., Napolitano, T., Nastasi, M., Navick, X. F., Nikkel, J., Nipoti, R., Nisi, S., Nones, C., Norman, E. B., Novosad, V., Nutini, I., O’Donnell, T., Olivieri, E., Oriol, C., Ouellet, J. L., Pagan, S., Pagliarone, C., Pagnanini, L., Pari, P., Pattavina, L., Paul, B., Pavan, M., Peng, H., Pessina, G., Pettinacci, V., Pira, C., Pirro, S., V. Poda, D., Polakovic, T., Polischuk, O. G., Pozzi, S., Previtali, E., Puiu, A., Ressa, A., Rizzoli, R., Rosenfeld, C., Rusconi, C., Sanglard, V., Scarpaci, J. A., Schmidt, B., Sharma, V., Shlegel, V., Singh, V., Sisti, M., Speller, D., Surukuchi, P. T., Taffarello, L., Tellier, O., Tomei, C., Tretyak, V. I., Tsymbaliuk, A., Velazquez, M., Vetter, K. J., Wagaarachchi, S. L., Wang, G., Wang, L., Welliver, B., Wilson, J., Wilson, K., Winslow, L. A., Xue, M., Yan, L., Yang, J., Yefremenko, V., Yumatov, V., Zarytskyy, M. M., Zhang, J., Zolotarova, A., Zucchelli, S.

    Published 2022
    “…We assessed the identification of $$\alpha $$ α particles with and without a reflecting foil that enhances the scintillation light collection efficiency, proving that the baseline design of CUPID already ensures a complete suppression of this $$\alpha $$ α -induced background contribution. …”
    Get full text
    Article
  15. 1575

    Characterization of cubic Li $$_{2}$$ 2... by Armatol, A., Armengaud, E., Armstrong, W., Augier, C., Avignone, F. T, Azzolini, O., Barabash, A., Bari, G., Barresi, A., Baudin, D., Bellini, F., Benato, G., Beretta, M., Bergé, L., Biassoni, M., Billard, J., Boldrini, V., Branca, A., Brofferio, C., Bucci, C.

    Published 2021
    “…We assessed the identification of $$\alpha $$ α particles with and without a reflecting foil that enhances the scintillation light collection efficiency, proving that the baseline design of CUPID already ensures a complete suppression of this $$\alpha $$ α -induced background contribution. …”
    Get full text
    Article
  16. 1576

    Characterization of cubic Li$$_{2}$$$$^{100}$$MoO$$_4$$ crystals for the CUPID experiment by Armatol, A., Armengaud, E., Armstrong, W., Augier, C., Avignone, F. T., Azzolini, O., Barabash, A., Bari, G., Barresi, A., Baudin, D., Bellini, F., Benato, G., Beretta, M., Bergé, L., Biassoni, M., Billard, J., Boldrini, V., Branca, A., Brofferio, C., Bucci, C., Camilleri, J., Capelli, S., Cappelli, L., Cardani, L., Carniti, P., Casali, N., Cazes, A., Celi, E., Chang, C., Chapellier, M., Charrier, A., Chiesa, D., Clemenza, M., Colantoni, I., Collamati, F., Copello, S., Cremonesi, O., J. Creswick, R., Cruciani, A., D’Addabbo, A., D’Imperio, G., Dafinei, I., A. Danevich, F., de Combarieu, M., De Jesus, M., de Marcillac, P., Dell’Oro, S., Di Domizio, S., Dompè, V., Drobizhev, A., Dumoulin, L., Fantini, G., Faverzani, M., Ferri, E., Ferri, F., Ferroni, F., Figueroa-Feliciano, E., Formaggio, J., Franceschi, A., Fu, C., Fu, S., Fujikawa, B. K., Gascon, J., Giachero, A., Gironi, L., Giuliani, A., Gorla, P., Gotti, C., Gras, P., Gros, M., Gutierrez, T. D., Han, K., Hansen, E. V., Heeger, K. M., Helis, D. L., Huang, H. Z., Huang, R. G., Imbert, L., Johnston, J., Juillard, A., Karapetrov, G., Keppel, G., Khalife, H., Kobychev, V. V., Kolomensky, Yu. G., Konovalov, S., Liu, Y., Loaiza, P., Ma, L., Madhukuttan, M., Mancarella, F., Mariam, R., Marini, L., Marnieros, S., Martinez, M., Maruyama, R. H., Mauri, B., Mayer, D., Mei, Y., Milana, S., Misiak, D., Napolitano, T., Nastasi, M., Navick, X. F., Nikkel, J., Nipoti, R., Nisi, S., Nones, C., Norman, E. B., Novosad, V., Nutini, I., O’Donnell, T., Olivieri, E., Oriol, C., Ouellet, J. L., Pagan, S., Pagliarone, C., Pagnanini, L., Pari, P., Pattavina, L., Paul, B., Pavan, M., Peng, H., Pessina, G., Pettinacci, V., Pira, C., Pirro, S., V. Poda, D., Polakovic, T., Polischuk, O. G., Pozzi, S., Previtali, E., Puiu, A., Ressa, A., Rizzoli, R., Rosenfeld, C., Rusconi, C., Sanglard, V., Scarpaci, J. A., Schmidt, B., Sharma, V., Shlegel, V., Singh, V., Sisti, M., Speller, D., Surukuchi, P. T., Taffarello, L., Tellier, O., Tomei, C., Tretyak, V. I., Tsymbaliuk, A., Velazquez, M., Vetter, K. J., Wagaarachchi, S. L., Wang, G., Wang, L., Welliver, B., Wilson, J., Wilson, K., Winslow, L. A., Xue, M., Yan, L., Yang, J., Yefremenko, V., Yumatov, V., Zarytskyy, M. M., Zhang, J., Zolotarova, A., Zucchelli, S.

    Published 2022
    “…We assessed the identification of $$\alpha $$ α particles with and without a reflecting foil that enhances the scintillation light collection efficiency, proving that the baseline design of CUPID already ensures a complete suppression of this $$\alpha $$ α -induced background contribution. …”
    Get full text
    Article
  17. 1577

    Characterization of cubic Li $$_{2}$$ 2... by Armatol, A., Armengaud, E., Armstrong, W., Augier, C., Avignone, F. T, Azzolini, O., Barabash, A., Bari, G., Barresi, A., Baudin, D., Bellini, F., Benato, G., Beretta, M., Bergé, L., Biassoni, M., Billard, J., Boldrini, V., Branca, A., Brofferio, C., Bucci, C.

    Published 2021
    “…We assessed the identification of $$\alpha $$ α particles with and without a reflecting foil that enhances the scintillation light collection efficiency, proving that the baseline design of CUPID already ensures a complete suppression of this $$\alpha $$ α -induced background contribution. …”
    Get full text
    Article
  18. 1578
  19. 1579
  20. 1580

    Design and construction of the MicroBooNE Cosmic Ray Tagger system by Adams, C, Collaboration, M, Alrashed, M, An, R, Anthony, J, Asaadi, J, Ashkenazi, A, Auger, M, Balasubramanian, S, Baller, B, Barnes, C, Barr, G, Bass, M, Bay, F, Bhat, A, Bhattacharya, K, Bishai, M, Blake, A, Bolton, T, Camilleri, L, Caratelli, D, Terrazas, IC, Carr, R, Fernandez, RC, Cavanna, F, Cerati, G, Chen, Y, Church, E, Cianci, D, Cohen, E, Collin, G, Conrad, J, Convery, M, Cooper-Troendle, L, Crespo-Anadon, JI, Del Tutto, M, Devitt, D, Diaz, A, Duffy, K, Dytman, S, Eberly, B, Ereditato, A, Sanchez, LE, Esquivel, J, Evans, JJ, Fadeeva, AA, Fitzpatrick, RS, Fleming, BT, Franco, D, Furmanski, AP, Garcia-Gamez, D, Garvey, GT, Genty, V, Goeldi, D, Gollapinniz, S, Goodwin, O, Gramellini, E, Greenlee, H, Grosso, R, Guenette, R, Guzowski, P, Hackenburg, A, Hamilton, P, Hen, O, Hewes, J, Hill, C, Horton-Smith, GA, Hourlier, A, Huang, E-C, James, C, De Vries, JJ, Jiang, L, Johnson, RA, Joshi, J, Jostlein, H, Jwa, Y-J, Karagiorgi, G, Ketchum, W, Kirby, B, Kirby, M, Kobilarcik, T, Kreslo, I, Li, Y, Lister, A, Littlejohn, BR, Lockwitz, S, Lorca, D, Louis, WC, Luethi, M, Lundberg, B, Luo, X, Marchionni, A, Marcocci, S, Mariani, C, Marshall, J, Martin-Albo, J, Caicedo, DAM, Mastbaum, A, Meddage, V, Mettler, T, Mills, GB, Mistry, K, Mogan, A, Moon, J, Mooney, M, Moore, CD, Mousseau, J, Murphy, M, Murrells, R, Naples, D, Nienaber, P, Nowak, J, Palamara, O, Pandey, V, Paolone, V, Papadopoulou, A, Papavassiliou, V, Pate, SF, Pavlovic, Z, Piasetzky, E, Porzio, D, Pulliam, G, Qian, X, Raaf, JL, Rafique, A, Rochester, L, Ross-Lonergan, M, Von Rohr, CR, Russell, B, Schmitz, DW, Schukraft, A, Seligman, W, Shaevitz, MH, Sharankova, R, Sinclair, J, Smith, A, Snider, EL, Soderberg, M, Soldner-Rembold, S, Soleti, SR, Spentzouris, P, Spitz, J, St John, J, Strauss, T, Sutton, K, Sword-Fehlberg, S, Szelc, AM, Tagg, N, Tang, W, Terao, K, Thomson, M, Thornton, RT, Toups, M, Tsai, Y-T, Tufanli, S, Usher, T, Van De Pontseele, W, Van De Water, RG, Viren, B, Weber, M, Wei, H, Wickremasinghe, DA, Wierman, K, Williams, Z, Wolbers, S, Wongjirad, T, Woodruff, K, Yang, T, Yarbrough, G, Yates, LE, Zeller, GP, Zennameh, J, Zhang, C

    Published 2019
    “…The system utilizes plastic scintillation modules to provide precise time and position information for TPC-traversing particles. …”
    Journal article