Showing 421 - 438 results of 438 for search '"spontaneous symmetry breaking"', query time: 0.13s Refine Results
  1. 421
  2. 422

    The new flavor of Higgsed gauge mediation by Craig, Nathaniel, McCullough, Matthew P., Thaler, Jesse

    Published 2013
    “…We develop a new formalism for calculating perturbative gauge-mediated two-loop soft masses for gauge groups with arbitrary patterns of spontaneous symmetry breaking, simplifying the framework of “Higgsed gauge mediation.” …”
    Get full text
    Get full text
    Article
  3. 423

    Measurements of the associated production of a Higgs boson decaying into two beauty quarks with a weak vector boson by Ambroz, L

    Published 2020
    “…Its observation, by the ATLAS and CMS collaborations in 2012, has confirmed the existence of the Higgs field, which is responsible for the spontaneous symmetry breaking mechanism in the electroweak sector and the mass generation of fermions through the Yukawa interaction. …”
    Thesis
  4. 424

    Spontaneous Lorentz symmetry-breaking constraints in Kalb–Ramond gravity by Ednaldo L. B. Junior, José Tarciso S. S. Junior, Francisco S. N. Lobo, Manuel E. Rodrigues, Diego Rubiera-Garcia, Luís F. Dias da Silva, Henrique A. Vieira

    Published 2024-12-01
    “…The ratio of precession frequencies for General Relativity (GR) and KR gravity is computed, with Event Horizon Telescope (EHT) results providing a parameter range for the spontaneous symmetry-breaking of $$-0.185022 \le l \le 0.060938$$ - 0.185022 ≤ l ≤ 0.060938 . …”
    Get full text
    Article
  5. 425

    Interaction between games give rise to the evolution of moral norms of cooperation. by Mohammad Salahshour

    Published 2022-09-01
    “…When the second game belongs to the anti-coordination class, the system possesses a spontaneous symmetry-breaking phase transition above which the symmetry between cooperation and defection breaks. …”
    Get full text
    Article
  6. 426

    A novel solution to the gravitino problem by Yu-Cheng Qiu, S.-H. Henry Tye

    Published 2023-02-01
    “…This non-linear supergravity scenario offers 2 ways to solve the gravitino problem, with very different particle physics phenomenologies: (1) To satisfy the necessary condition for a naturally small cosmological constant Λ, the supersymmetry breaking D 3 ¯ $$ \overline{\textrm{D}3} $$ -branes tension is precisely cancelled by the Higgs spontaneous symmetry breaking effect, so the gravitino is ultra-light and its contribution to the dark matter density is negligible. …”
    Get full text
    Article
  7. 427

    The influence of orbital moments in anomalous Hall effect in Co/Ni multilayers with perpendicular magnetic anisotropy by N. Song, Y. X. Huang, K. Ren, J. X. Ding, T. Li, J. K. Zhang, J. L. Xie, Y. H. Xu, Z. H. Ding, J. S. Zhu, Z. Z. Wang, W. Liao, G. Li, L. Wang

    Published 2022-02-01
    “…The former can be explained by considering the influence of the external magnetic field on the interfacial spin orbit interaction due to spontaneous symmetry breaking at the ferromagnetic (FM)/FM layer interface. …”
    Get full text
    Article
  8. 428

    Symmetry, stability, and computation of degenerate lasing modes by Ge, Li, Pick, Adi, Burkhardt, Stephan, Liertzer, Matthias, Rotter, Stefan, Liu, David, Zhen, Bo, Hernandez, Felipe, Johnson, Steven G

    Published 2017
    “…Above threshold, we show that a key feature of the circulating mode is its “chiral” intensity pattern, which arises from spontaneous symmetry breaking of mirror symmetry, and whose symmetry group requires that the degeneracy persists even when nonlinear effects become important. …”
    Get full text
    Get full text
    Get full text
    Get full text
    Article
  9. 429

    Aurora A depletion reveals centrosome-independent polarization mechanism in Caenorhabditis elegans by Kerstin Klinkert, Nicolas Levernier, Peter Gross, Christian Gentili, Lukas von Tobel, Marie Pierron, Coralie Busso, Sarah Herrman, Stephan W Grill, Karsten Kruse, Pierre Gönczy

    Published 2019-02-01
    “…Furthermore, we develop an integrated physical description of symmetry breaking, wherein local PAR-2-dependent weakening of the actin cortex, together with mutual inhibition of anterior and posterior PAR proteins, provides a mechanism for spontaneous symmetry breaking without centrosomes.…”
    Get full text
    Article
  10. 430
  11. 431

    Investigation of J-Aggregates of 2,3,7,8,12,13,17,18-Octabromo-5,10,15,20-tetrakis(4-sulfonatophenyl) Porphyrin in Aqueous Solutions by Balkis Abdelaziz, Mariachiara Sarà, Sahbi Ayachi, Roberto Zagami, Salvatore Patanè, Andrea Romeo, Maria Angela Castriciano, Luigi Monsù Scolaro

    Published 2023-10-01
    “…The <i>k<sub>c</sub></i> values for this latter step increase on decreasing the acid concentration and on increasing the porphyrin concentration, with a strong power-law dependence. No spontaneous symmetry breaking or transfer of chirality from chiral inducers is observed. …”
    Get full text
    Article
  12. 432

    Kinetic Investigation on Tetrakis(4-Sulfonatophenyl)Porphyrin J-Aggregates Formation Catalyzed by Cationic Metallo-Porphyrins by Ilaria Giuseppina Occhiuto, Roberto Zagami, Mariachiara Trapani, Maria Angela Castriciano, Andrea Romeo, Luigi Monsù Scolaro

    Published 2020-12-01
    “…With the exception of AuT<sub>4</sub>, the final aggregated samples obtained at the highest catalyst concentration exhibit a negative Cotton effect in the J-band region, evidencing the occurrence of spontaneous symmetry breaking. The role of the nature of the metal derivative in terms of overall charge and presence of axial groups will be discussed.…”
    Get full text
    Article
  13. 433

    Interaction between games give rise to the evolution of moral norms of cooperation by Mohammad Salahshour

    Published 2022-09-01
    “…When the second game belongs to the anti-coordination class, the system possesses a spontaneous symmetry-breaking phase transition above which the symmetry between cooperation and defection breaks. …”
    Get full text
    Article
  14. 434

    Comment on the Vacuum Energy Density for <i>λϕ</i><sup>4</sup> Theory in <i>d</i> Spacetime Dimensions by André LeClair

    Published 2023-06-01
    “…This calculation indicates that the vacuum energy can be well-defined, positive or negative, without spontaneous symmetry breaking. We also show that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ρ</mi><mi>vac</mi></msub></semantics></math></inline-formula> satisfies a Callan–Symanzik type of renormalization group equation. …”
    Get full text
    Article
  15. 435

    Honeycomb‐Layered Oxides With Silver Atom Bilayers and Emergence of Non‐Abelian SU(2) Interactions by Titus Masese, Godwill Mbiti Kanyolo, Yoshinobu Miyazaki, Miyu Ito, Noboru Taguchi, Josef Rizell, Shintaro Tachibana, Kohei Tada, Zhen‐Dong Huang, Abbas Alshehabi, Hiroki Ubukata, Keigo Kubota, Kazuki Yoshii, Hiroshi Senoh, Cédric Tassel, Yuki Orikasa, Hiroshi Kageyama, Tomohiro Saito

    Published 2023-02-01
    “…Within the Ag$ m Ag$‐rich domains, the bilayered structure, argentophilic interactions therein and the expected Ag$ m Ag$ sub‐valent states (1/2+,2/3+$1/2+, 2/3+$, etc.) are theoretically understood via spontaneous symmetry breaking of SU(2)× U(1) gauge symmetry interactions amongst 3 degenerate mass‐less chiral fermion states, justified by electron occupancy of silver 4dz2$4d_{z^2}$ and 5s orbitals on a bifurcated honeycomb lattice. …”
    Get full text
    Article
  16. 436

    Theoretically Motivated Dark Electromagnetism as the Origin of Relativistic Modified Newtonian Dynamics by Felix Finster, José M. Isidro, Claudio F. Paganini, Tejinder P. Singh

    Published 2024-03-01
    “…RelMOND is identified with dark electromagnetism <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>U</mi><msub><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>D</mi><mi>E</mi><mi>M</mi></mrow></msub></mrow></semantics></math></inline-formula>, which is the remaining unbroken symmetry after the spontaneous symmetry breaking of the dark electro-grav sector <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>U</mi><msub><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow><mi>R</mi></msub><mo>×</mo><mi>U</mi><msub><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>Y</mi><mi>D</mi><mi>E</mi><mi>M</mi></mrow></msub></mrow></semantics></math></inline-formula>. …”
    Get full text
    Article
  17. 437

    Tevatron Run II combination of the effective leptonic electroweak mixing angle by Aaltonen, T., Abazov, V. M., Abbott, B., Acharya, B. S., Adams, M., Adams, T., Agnew, J. P., Alexeev, G. D., Alkhazov, G., Alton, A., Amerio, S., Amidei, D., Anastassov, A., Annovi, A., Antos, J., Apollinari, G., Appel, J. A., Arisawa, T., Artikov, A., Asaadi, J., Ashmanskas, W., Askew, A., Atkins, S., Auerbach, B., Augsten, K., Aurisano, A., Aushev, V., Aushev, Y., Avila, C., Azfar, F., Badaud, F., Badgett, W., Bae, T., Bagby, L., Baldin, B., Bandurin, D. V., Banerjee, S., Barbaro-Galtieri, A., Barberis, E., Baringer, P., Barnes, V. E., Barnett, B. A., Barria, P., Bartlett, J. F., Bartos, P., Bassler, U., Bauce, M., Bazterra, V., Bean, A., Bedeschi, F., Begalli, M., Behari, S., Bellantoni, L., Bellettini, G., Bellinger, J., Benjamin, D., Beretvas, A., Beri, S. B., Bernardi, G., Bernhard, R., Bertram, I., Besançon, M., Beuselinck, R., Bhat, P. C., Bhatia, S., Bhatnagar, V., Bhatti, A., Bland, K. R., Blazey, G., Blessing, S., Bloom, K., Blumenfeld, B., Bocci, A., Bodek, A., Boehnlein, A., Boline, D., Boos, E. E., Borissov, G., Bortoletto, D., Borysova, M., Boudreau, J., Boveia, A., Brandt, A., Brandt, O., Brigliadori, L., Brochmann, M., Brock, R., Bromberg, C., Bross, A., Brown, D., Brucken, E., Bu, X. B., Budagov, J., Budd, H. S., Buehler, M., Buescher, V., Bunichev, V., Burdin, S., Burkett, K., Busetto, G., Bussey, P., Buszello, C. P., Butti, P., Buzatu, A., Calamba, A., Camacho-Pérez, E., Camarda, S., Campanelli, M., Canelli, F., Carls, B., Carlsmith, D., Carosi, R., Carrillo, S., Casal, B., Casarsa, M., Casey, B. C. K., Castilla-Valdez, H., Castro, A., Catastini, P., Caughron, S., Cauz, D., Cavaliere, V., Cerri, A., Cerrito, L., Chakrabarti, S., Chan, K. M., Chandra, A., Chapon, E., Chen, G., Chen, Y. C., Chertok, M., Chiarelli, G., Chlachidze, G., Cho, K., Cho, S. W., Choi, S., Chokheli, D., Choudhary, B., Cihangir, S., Claes, D., Clark, A., Clarke, C., Clutter, J., Convery, M. E., Conway, J., Cooke, M., Cooper, W. E., Corbo, M., Corcoran, M., Cordelli, M., Couderc, F., Cousinou, M.-C., Cox, C. A., Cox, D. J., Cremonesi, M., Cruz, D., Cuevas, J., Culbertson, R., Cuth, J., Cutts, D., Das, A., d’Ascenzo, N., Datta, M., Davies, G., de Barbaro, P., de Jong, S. J., De La Cruz-Burelo, E., Déliot, F., Demina, R., Demortier, L., Deninno, M., Denisov, D., Denisov, S. P., D’Errico, M., Desai, S., Deterre, C., DeVaughan, K., Devoto, F., Di Canto, A., Di Ruzza, B., Diehl, H. T., Diesburg, M., Ding, P. F., Dittmann, J. R., Dominguez, A., Donati, S., D’Onofrio, M., Dorigo, M., Driutti, A., Drutskoy, A., Dubey, A., Dudko, L. V., Duperrin, A., Dutt, S., Eads, M., Ebina, K., Edgar, R., Edmunds, D., Elagin, A., Ellison, J., Elvira, V. D., Enari, Y., Erbacher, R., Errede, S., Esham, B., Evans, H., Evdokimov, A., Evdokimov, V. N., Farrington, S., Fauré, A., Feng, L., Ferbel, T., Fernández Ramos, J. P., Fiedler, F., Field, R., Filthaut, F., Fisher, W., Fisk, H. E., Flanagan, G., Forrest, R., Fortner, M., Fox, H., Franc, J., Franklin, M., Freeman, J. C., Frisch, H., Fuess, S., Funakoshi, Y., Galloni, C., Garbincius, P. H., Garcia-Bellido, A., García-González, J. A., Garfinkel, A. F., Garosi, P., Gavrilov, V., Geng, W., Gerber, C. E., Gerberich, H., Gerchtein, E., Gershtein, Y., Giagu, S., Giakoumopoulou, V., Gibson, K., Ginsburg, C. M., Ginther, G., Giokaris, N., Giromini, P., Glagolev, V., Glenzinski, D., Gogota, O., Gold, M., Goldin, D., Golossanov, A., Golovanov, G., Gomez, G., González López, O., Gorelov, I., Goshaw, A. T., Goulianos, K., Gramellini, E., Grannis, P. D., Greder, S., Greenlee, H., Grenier, G., Gris, Ph., Grivaz, J.-F., Grohsjean, A., Grosso-Pilcher, C., Grünendahl, S., Grünewald, M. W., Guillemin, T., Guimaraes da Costa, J., Gutierrez, G., Gutierrez, P., Hahn, S. R., Haley, J., Han, J. Y., Han, L., Happacher, F., Hara, K., Harder, K., Hare, M., Harel, A., Harr, R. F., Harrington-Taber, T., Hatakeyama, K., Hauptman, J. M., Hays, C., Hays, J., Head, T., Hebbeker, T., Hedin, D., Hegab, H., Heinrich, J., Heinson, A. P., Heintz, U., Hensel, C., Heredia-De La Cruz, I., Herndon, M., Herner, K., Hesketh, G., Hildreth, M. D., Hirosky, R., Hoang, T., Hobbs, J. D., Hocker, A., Hoeneisen, B., Hogan, J., Hohlfeld, M., Holzbauer, J. L., Hong, Z., Hopkins, W., Hou, S., Howley, I., Hubacek, Z., Hughes, R. E., Husemann, U., Hussein, M., Huston, J., Hynek, V., Iashvili, I., Ilchenko, Y., Illingworth, R., Introzzi, G., Iori, M., Ito, A. S., Ivanov, A., Jabeen, S., Jaffré, M., James, E., Jang, D., Jayasinghe, A., Jayatilaka, B., Jeon, E. J., Jeong, M. S., Jesik, R., Jiang, P., Jindariani, S., Johns, K., Johnson, E., Johnson, M., Jonckheere, A., Jones, M., Jonsson, P., Joo, K. K., Joshi, J., Jun, S. Y., Jung, A. W., Junk, T. R., Juste, A., Kajfasz, E., Kambeitz, M., Kamon, T., Karchin, P. E., Karmanov, D., Kasmi, A., Kato, Y., Katsanos, I., Kaur, M., Kehoe, R., Kermiche, S., Ketchum, W., Keung, J., Khalatyan, N., Khanov, A., Kharchilava, A., Kharzheev, Y. N., Kilminster, B., Kim, D. H., Kim, H. S., Kim, J. E., Kim, M. J., Kim, S. H., Kim, S. B., Kim, Y. J., Kim, Y. K., Kimura, N., Kirby, M., Kiselevich, I., Kohli, J. M., Kondo, K., Kong, D. J., Konigsberg, J., Kotwal, A. V., Kozelov, A. V., Kraus, J., Kreps, M., Kroll, J., Kruse, M., Kuhr, T., Kumar, A., Kupco, A., Kurata, M., Kurča, T., Kuzmin, V. A., Laasanen, A. T., Lammel, S., Lammers, S., Lancaster, M., Lannon, K., Latino, G., Lebrun, P., Lee, H. S., Lee, H. S., Lee, J. S., Lee, S. W., Lee, W. M., Lei, X., Lellouch, J., Leo, S., Leone, S., Lewis, J. D., Li, D., Li, H., Li, L., Li, Q. Z., Lim, J. K., Limosani, A., Lincoln, D., Linnemann, J., Lipaev, V. V., Lipeles, E., Lipton, R., Lister, A., Liu, H., Liu, Q., Liu, T., Liu, Y., Lobodenko, A., Lockwitz, S., Loginov, A., Lokajicek, M., Lopes de Sa, R., Lucchesi, D., Lucà, A., Lueck, J., Lujan, P., Lukens, P., Luna-Garcia, R., Lungu, G., Lyon, A. L., Lys, J., Lysak, R., Maciel, A. K. A., Madar, R., Madrak, R., Maestro, P., Magaña-Villalba, R., Malik, S., Malik, S., Malyshev, V. L., Manca, G., Manousakis-Katsikakis, A., Mansour, J., Marchese, L., Margaroli, F., Marino, P., Martínez-Ortega, J., Matera, K., Mattson, M. E., Mazzacane, A., Mazzanti, P., McCarthy, R., McGivern, C. L., McNulty, R., Mehta, A., Mehtala, P., Meijer, M. M., Melnitchouk, A., Menezes, D., Mercadante, P. G., Merkin, M., Mesropian, C., Meyer, A., Meyer, J., Miao, T., Miconi, F., Mietlicki, D., Mitra, A., Miyake, H., Moed, S., Moggi, N., Mondal, N. K., Moon, C. S., Moore, R., Morello, M. J., Mukherjee, A., Mulhearn, M., Muller, Th., Murat, P., Mussini, M., Nachtman, J., Nagai, Y., Naganoma, J., Nagy, E., Nakano, I., Napier, A., Narain, M., Nayyar, R., Neal, H. A., Negret, J. P., Nett, J., Neustroev, P., Nguyen, H. T., Nigmanov, T., Nodulman, L., Noh, S. Y., Norniella, O., Nunnemann, T., Oakes, L., Oh, S. H., Oh, Y. D., Okusawa, T., Orava, R., Orduna, J., Ortolan, L., Osman, N., Pagliarone, C., Pal, A., Palencia, E., Palni, P., Papadimitriou, V., Parashar, N., Parihar, V., Park, S. K., Parker, W., Partridge, R., Parua, N., Patwa, A., Pauletta, G., Paulini, M., Penning, B., Perfilov, M., Peters, Y., Petridis, K., Petrillo, G., Pétroff, P., Phillips, T. J., Piacentino, G., Pianori, E., Pilot, J., Pitts, K., Plager, C., Pleier, M.-A., Podstavkov, V. M., Pondrom, L., Popov, A. V., Poprocki, S., Potamianos, K., Pranko, A., Prewitt, M., Price, D., Prokopenko, N., Prokoshin, F., Ptohos, F., Punzi, G., Qian, J., Quadt, A., Quinn, B., Ratoff, P. N., Razumov, I., Redondo Fernández, I., Renton, P., Rescigno, M., Rimondi, F., Ripp-Baudot, I., Ristori, L., Rizatdinova, F., Robson, A., Rodriguez, T., Rolli, S., Rominsky, M., Ronzani, M., Roser, R., Rosner, J. L., Ross, A., Royon, C., Rubinov, P., Ruchti, R., Ruffini, F., Ruiz, A., Russ, J., Rusu, V., Sajot, G., Sakumoto, W. K., Sakurai, Y., Sánchez-Hernández, A., Sanders, M. P., Santi, L., Santos, A. S., Sato, K., Savage, G., Saveliev, V., Savitskyi, M., Savoy-Navarro, A., Sawyer, L., Scanlon, T., Schamberger, R. D., Scheglov, Y., Schellman, H., Schlabach, P., Schmidt, E. E., Schott, M., Schwanenberger, C., Schwarz, T., Schwienhorst, R., Scodellaro, L., Scuri, F., Seidel, S., Seiya, Y., Sekaric, J., Semenov, A., Severini, H., Sforza, F., Shabalina, E., Shalhout, S. Z., Shary, V., Shaw, S., Shchukin, A. A., Shears, T., Shepard, P. F., Shimojima, M., Shkola, O., Shochet, M., Shreyber-Tecker, I., Simak, V., Simonenko, A., Skubic, P., Slattery, P., Sliwa, K., Smith, J. R., Snider, F. D., Snow, G. R., Snow, J., Snyder, S., Söldner-Rembold, S., Song, H., Sonnenschein, L., Sorin, V., Soustruznik, K., St. Denis, R., Stancari, M., Stark, J., Stefaniuk, N., Stentz, D., Stoyanova, D. A., Strauss, M., Strologas, J., Sudo, Y., Sukhanov, A., Suslov, I., Suter, L., Svoisky, P., Takemasa, K., Takeuchi, Y., Tang, J., Tecchio, M., Teng, P. K., Thom, J., Thomson, E., Thukral, V., Titov, M., Toback, D., Tokar, S., Tokmenin, V. V., Tollefson, K., Tomura, T., Tonelli, D., Torre, S., Torretta, D., Totaro, P., Trovato, M., Tsai, Y.-T., Tsybychev, D., Tuchming, B., Tully, C., Ukegawa, F., Uozumi, S., Uvarov, L., Uvarov, S., Uzunyan, S., Van Kooten, R., van Leeuwen, W. M., Varelas, N., Varnes, E. W., Vasilyev, I. A., Vázquez, F., Velev, G., Vellidis, C., Verkheev, A. Y., Vernieri, C., Vertogradov, L. S., Verzocchi, M., Vesterinen, M., Vidal, M., Vilanova, D., Vilar, R., Vizán, J., Vogel, M., Vokac, P., Volpi, G., Wagner, P., Wahl, H. D., Wallny, R., Wang, C., Wang, M. H. L. S., Wang, S. M., Warchol, J., Waters, D., Watts, G., Wayne, M., Weichert, J., Welty-Rieger, L., Wester, W. C., Whiteson, D., Wicklund, A. B., Wilbur, S., Williams, H. H., Williams, M. R. J., Wilson, G. W., Wilson, J. S., Wilson, P., Winer, B. L., Wittich, P., Wobisch, M., Wolbers, S., Wolfmeister, H., Wood, D. R., Wright, T., Wu, X., Wu, Z., Wyatt, T. R., Xiang, Y., Xie, Y., Yamada, R., Yamamoto, K., Yamato, D., Yang, S., Yang, T., Yang, U. K., Yang, Y. C., Yao, W.-M., Yasuda, T., Yatsunenko, Y. A., Ye, W., Ye, Z., Yeh, G. P., Yi, K., Yin, H., Yip, K., Yoh, J., Yorita, K., Yoshida, T., Youn, S. W., Yu, G. B., Yu, I., Yu, J. M., Zanetti, A. M., Zeng, Y., Zennamo, J., Zhao, T. G., Zhou, B., Zhou, C., Zhu, J., Zielinski, M., Zieminska, D., Zivkovic, L., Zucchelli, S., CDF Collaboration, D0 Collaboration, Gomez-Ceballos, Guillelmo, Goncharov, Maxim, Paus, Christoph M. E.

    Published 2018
    “…Drell-Yan lepton pairs produced in the process pp[over ¯]→ℓ⁺ℓ⁻+X through an intermediate γ*/Z boson have an asymmetry in their angular distribution related to the spontaneous symmetry breaking of the electroweak force and the associated mixing of its neutral gauge bosons. …”
    Get full text
    Get full text
    Article
  18. 438

    Nonlinear sigma model description of deconfined quantum criticality in arbitrary dimensions by Da-Chuan Lu

    Published 2023-07-01
    “…In this paper, we propose using the nonlinear sigma model (NLSM) with the Wess-Zumino-Witten (WZW) term as a general description of deconfined quantum critical points that separate two spontaneously symmetry-breaking (SSB) phases in arbitrary dimensions. …”
    Get full text
    Article