Published 2024-02-01
“…The strongest reflections of the powder X-ray diffraction pattern [<span class="inline-formula"><i>d</i></span>,Å(<span class="inline-formula"><i>I</i></span>)(hkl)] are 6.22(42)(001, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M86" display="inline" overflow="scroll" dspmath="mathml"><mrow><mover accent="true"><mn mathvariant="normal">1</mn><mo mathvariant="normal">‾</mo></mover><mover accent="true"><mn mathvariant="normal">1</mn><mo mathvariant="normal">‾</mo></mover></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="14pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="2282591e01b21b41097ba34ed705f906"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-36-183-2024-ie00001.svg" width="14pt" height="13pt" src="ejm-36-183-2024-ie00001.png"/></svg:svg></span></span>1, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M87" display="inline" overflow="scroll" dspmath="mathml"><mover accent="true"><mn mathvariant="normal">1</mn><mo mathvariant="normal">‾</mo></mover></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="5445985db901d5781204365310a46c72"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-36-183-2024-ie00002.svg" width="8pt" height="13pt" src="ejm-36-183-2024-ie00002.png"/></svg:svg></span></span>01), 4.430(100)(0<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M88" display="inline" overflow="scroll" dspmath="mathml"><mover accent="true"><mn mathvariant="normal">1</mn><mo mathvariant="normal">‾</mo></mover></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="b27baaa401d61191e3e962152f3741ad"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-36-183-2024-ie00003.svg" width="8pt" height="13pt" src="ejm-36-183-2024-ie00003.png"/></svg:svg></span></span>1, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M89" display="inline" overflow="scroll" dspmath="mathml"><mrow><mover accent="true"><mn mathvariant="normal">2</mn><mo mathvariant="normal">‾</mo></mover><mover accent="true"><mn mathvariant="normal">1</mn><mo mathvariant="normal">‾</mo></mover></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="14pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="bf3f266fddb8389109632b1173faa9f7"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-36-183-2024-ie00004.svg" width="14pt" height="13pt" src="ejm-36-183-2024-ie00004.png"/></svg:svg></span></span>1, 120), 4.094(37)(<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M90" display="inline" overflow="scroll" dspmath="mathml"><mrow><mover accent="true"><mn mathvariant="normal">1</mn><mo mathvariant="normal">‾</mo></mover><mover accent="true"><mn mathvariant="normal">2</mn><mo mathvariant="normal">‾</mo></mover></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="14pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="3fd11bc05b347aa74e3cc557986215d4"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-36-183-2024-ie00005.svg" width="14pt" height="13pt" src="ejm-36-183-2024-ie00005.png"/></svg:svg></span></span>1, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M91" display="inline" overflow="scroll" dspmath="mathml"><mover accent="true"><mn mathvariant="normal">1</mn><mo mathvariant="normal">‾</mo></mover></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="2acabf577e2a157fce495ceccec50f26"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-36-183-2024-ie00006.svg" width="8pt" height="13pt" src="ejm-36-183-2024-ie00006.png"/></svg:svg></span></span>11, 210, 111), 3.263(26)(1<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M92" display="inline" overflow="scroll" dspmath="mathml"><mover accent="true"><mn mathvariant="normal">1</mn><mo mathvariant="normal">‾</mo></mover></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="c5e20cf2823e522f4c3f5e6997614f33"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-36-183-2024-ie00007.svg" width="8pt" height="13pt" src="ejm-36-183-2024-ie00007.png"/></svg:svg></span></span>1, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M93" display="inline" overflow="scroll" dspmath="mathml"><mrow><mover accent="true"><mn mathvariant="normal">2</mn><mo mathvariant="normal">‾</mo></mover><mover accent="true"><mn mathvariant="normal">1</mn><mo mathvariant="normal">‾</mo></mover></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="14pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="cc94a5e68b9c5c387408d7ac5effb673"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-36-183-2024-ie00008.svg" width="14pt" height="13pt" src="ejm-36-183-2024-ie00008.png"/></svg:svg></span></span>2, 121), 2.888(67)(<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M94" display="inline" overflow="scroll" dspmath="mathml"><mrow><mover accent="true"><mn mathvariant="normal">1</mn><mo mathvariant="normal">‾</mo></mover><mover accent="true"><mn mathvariant="normal">2</mn><mo mathvariant="normal">‾</mo></mover></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="14pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="f7c6a6ae1c456994736b355940db120c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-36-183-2024-ie00009.svg" width="14pt" height="13pt" src="ejm-36-183-2024-ie00009.png"/></svg:svg></span></span>2, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M95" display="inline" overflow="scroll" dspmath="mathml"><mover accent="true"><mn mathvariant="normal">1</mn><mo mathvariant="normal">‾</mo></mover></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="7960238e8bc2051c7d42913a96c78ca7"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-36-183-2024-ie00010.svg" width="8pt" height="13pt" src="ejm-36-183-2024-ie00010.png"/></svg:svg></span></span>12, 211), 2.633(38)(<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M96" display="inline" overflow="scroll" dspmath="mathml"><mover accent="true"><mn mathvariant="normal">3</mn><mo mathvariant="normal">‾</mo></mover></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="2e11a160c42a289023da7546e0aca019"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-36-183-2024-ie00011.svg" width="8pt" height="13pt" src="ejm-36-183-2024-ie00011.png"/></svg:svg></span></span>01, 030, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M97" display="inline" overflow="scroll" dspmath="mathml"><mrow><mover accent="true"><mn mathvariant="normal">3</mn><mo mathvariant="normal">‾</mo></mover><mover accent="true"><mn mathvariant="normal">3</mn><mo mathvariant="normal">‾</mo></mover></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="14pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="808cbf18cf87500e2da4e35142221119"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-36-183-2024-ie00012.svg" width="14pt" height="13pt" src="ejm-36-183-2024-ie00012.png"/></svg:svg></span></span>1), 2.263(23)(<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M98" display="inline" overflow="scroll" dspmath="mathml"><mover accent="true"><mn mathvariant="normal">2</mn><mo mathvariant="normal">‾</mo></mover></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="fe5662560d841f0ab255afccc5c57352"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-36-183-2024-ie00013.svg" width="8pt" height="13pt" src="ejm-36-183-2024-ie00013.png"/></svg:svg></span></span>21, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M99" display="inline" overflow="scroll" dspmath="mathml"><mrow><mover accent="true"><mn mathvariant="normal">2</mn><mo mathvariant="normal">‾</mo></mover><mover accent="true"><mn mathvariant="normal">4</mn><mo mathvariant="normal">‾</mo></mover></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="14pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="f0699da343777089063f64c89e576088"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-36-183-2024-ie00014.svg" width="14pt" height="13pt" src="ejm-36-183-2024-ie00014.png"/></svg:svg></span></span>1, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M100" display="inline" overflow="scroll" dspmath="mathml"><mrow><mover accent="true"><mn mathvariant="normal">4</mn><mo mathvariant="normal">‾</mo></mover><mover accent="true"><mn mathvariant="normal">2</mn><mo mathvariant="normal">‾</mo></mover></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="14pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="9e94642d216e366aee9afa352c1929f3"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-36-183-2024-ie00015.svg" width="14pt" height="13pt" src="ejm-36-183-2024-ie00015.png"/></svg:svg></span></span>1). 2.010(20)(0<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M101" display="inline" overflow="scroll" dspmath="mathml"><mover accent="true"><mn mathvariant="normal">3</mn><mo mathvariant="normal">‾</mo></mover></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="020289888beddcc42e5ccbeafd8166c5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-36-183-2024-ie00016.svg" width="8pt" height="13pt" src="ejm-36-183-2024-ie00016.png"/></svg:svg></span></span>2, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M102" display="inline" overflow="scroll" dspmath="mathml"><mrow><mover accent="true"><mn mathvariant="normal">3</mn><mo mathvariant="normal">‾</mo></mover><mover accent="true"><mn mathvariant="normal">3</mn><mo mathvariant="normal">‾</mo></mover></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="14pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="4c705c036fb6ab84c9e0438ec8dc4058"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-36-183-2024-ie00017.svg" width="14pt" height="13pt" src="ejm-36-183-2024-ie00017.png"/></svg:svg></span></span>3, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M103" display="inline" overflow="scroll" dspmath="mathml"><mover accent="true"><mn mathvariant="normal">3</mn><mo mathvariant="normal">‾</mo></mover></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="6f26ab08660f17bf45166b7dbe33571f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-36-183-2024-ie00018.svg" width="8pt" height="13pt" src="ejm-36-183-2024-ie00018.png"/></svg:svg></span></span>03, 301, 032, 331). The crystal
structure, solved and refined from single-crystal X-ray diffraction data (<span class="inline-formula"><i>R</i><sub>1</sub>=</span> 0.040), is of the weloganite type.…”
Get full text
Article