Showing 1 - 20 results of 128 for search '"superstation"', query time: 0.17s Refine Results
  1. 1
  2. 2

    Superstability of Generalized Derivations by Ansari-Piri Esmaeil, Anjidani Ehsan

    Published 2010-01-01
    “…We have also proved the superstability of generalized derivations associated to the linear functional equation <inline-formula> <graphic file="1029-242X-2010-740156-i5.gif"/></inline-formula>, where <inline-formula> <graphic file="1029-242X-2010-740156-i6.gif"/></inline-formula>.…”
    Get full text
    Article
  3. 3

    Superstability of Generalized Derivations by Esmaeil Ansari-Piri, Ehsan Anjidani

    Published 2010-01-01
    “…We investigate the superstability of the functional equation f(xy)=xf(y)+g(x)y, where f and g are the mappings on Banach algebra A. …”
    Get full text
    Article
  4. 4
  5. 5
  6. 6

    Superstability of Generalized Multiplicative Functionals by Takagi Hiroyuki, Tsukada Makoto, Miura Takeshi, Takahasi Sin-Ei

    Published 2009-01-01
    “…<p/> <p>Let <inline-formula> <graphic file="1029-242X-2009-486375-i1.gif"/></inline-formula> be a set with a binary operation <inline-formula> <graphic file="1029-242X-2009-486375-i2.gif"/></inline-formula> such that, for each <inline-formula> <graphic file="1029-242X-2009-486375-i3.gif"/></inline-formula>, either <inline-formula> <graphic file="1029-242X-2009-486375-i4.gif"/></inline-formula>, or <inline-formula> <graphic file="1029-242X-2009-486375-i5.gif"/></inline-formula>. We show the superstability of the functional equation <inline-formula> <graphic file="1029-242X-2009-486375-i6.gif"/></inline-formula>. …”
    Get full text
    Article
  7. 7
  8. 8
  9. 9
  10. 10

    On the Superstability Related with the Trigonometric Functional Equation by Gwang Hui Kim

    Published 2009-01-01
    “…We will investigate the superstability of the (hyperbolic) trigonometric functional equation from the following functional equations: f(x+y)&#x00B1;g(x&#x2212;y)=&#x03BB;f(x)g(y), f(x+y)&#x00B1;g(x&#x2212;y)=&#x03BB;g(x)f(y), f(x+y)&#x00B1;g(x&#x2212;y)=&#x03BB;f(x)f(y), f(x+y)&#x00B1;g(x&#x2212;y)=&#x03BB;g(x)g(y), which can be considered the mixed functional equations of the sine function and cosine function, of the hyperbolic sine function and hyperbolic cosine function, and of the exponential functions, respectively.…”
    Get full text
    Article
  11. 11
  12. 12
  13. 13

    Superstability of functional equations related to spherical functions by Székelyhidi László

    Published 2017-04-01
    “…Our proofs are based on superstability-type methods and on the method of invariant means.…”
    Get full text
    Article
  14. 14
  15. 15

    On the superstability of generalized d'Alembert harmonic functions by Iz-iddine EL-Fassi

    Published 2016-01-01
    “…The aim of this paper is to study the superstability problem of the d'Alembert type functional equation f(x+y+z)+f(x+y+σ(z))+f(x+σ(y)+z)+f(σ(x)+y+z)=4f(x)f(y)f(z) for all x,y,z ∈ G, where G is an abelian group and σ: G → G is an endomorphism such that σ(σ(x))=x for an unknown function f from G into C or into a commutative semisimple Banach algebra.…”
    Get full text
    Article
  16. 16

    On the Superstability of the Pexider Type Trigonometric Functional Equation by Kim GwangHui

    Published 2010-01-01
    “…<p>Abstract</p> <p>We will investigate the superstability of the (hyperbolic) trigonometric functional equation from the following functional equations: <inline-formula> <graphic file="1029-242X-2010-897123-i1.gif"/></inline-formula> and<inline-formula> <graphic file="1029-242X-2010-897123-i2.gif"/></inline-formula>, which can be considered the mixed functional equations of the sine function and cosine function, the hyperbolic sine function and hyperbolic cosine function, and the exponential functions, respectively.…”
    Get full text
    Article
  17. 17

    On the Superstability of the Pexider Type Trigonometric Functional Equation by Gwang Hui Kim

    Published 2010-01-01
    “…We will investigate the superstability of the (hyperbolic) trigonometric functional equation from the following functional equations: f(x+y)&#x00B1;g(x&#x2212;y)=&#x03BB;f(x)g(y) andf(x+y)&#x00B1;g(x&#x2212;y)=&#x03BB;g(x)f(y), which can be considered the mixed functional equations of the sine function and cosine function, the hyperbolic sine function and hyperbolic cosine function, and the exponential functions, respectively.…”
    Get full text
    Article
  18. 18
  19. 19
  20. 20