Отображение 101 - 120 результаты of 1,212 для поиска '"variational autoencoder"', время запроса: 0.48сек. Отмена результатов
  1. 101
  2. 102
  3. 103

    Integrated multi-omics analysis of ovarian cancer using variational autoencoders по Muta Tah Hira, M. A. Razzaque, Claudio Angione, James Scrivens, Saladin Sawan, Mosharraf Sarkar

    Опубликовано 2021-03-01
    “...DL-based dimensionality reduction technique, including variational autoencoder (VAE), is a potential solution to balance high dimensional multi-omics data. ...”
    Полный текст
    Статья
  4. 104

    Data augmentation using Variational Autoencoders for improvement of respiratory disease classification. по Jane Saldanha, Shaunak Chakraborty, Shruti Patil, Ketan Kotecha, Satish Kumar, Anand Nayyar

    Опубликовано 2022-01-01
    “...This work aims to synthesize respiratory sounds of various categories using variants of Variational Autoencoders like Multilayer Perceptron VAE (MLP-VAE), Convolutional VAE (CVAE) Conditional VAE and compare the influence of augmenting the imbalanced dataset on the performance of various lung sound classification models. ...”
    Полный текст
    Статья
  5. 105

    Model Predictive Control with Variational Autoencoders for Signal Temporal Logic Specifications по Eunji Im, Minji Choi, Kyunghoon Cho

    Опубликовано 2024-07-01
    “...A robustness margin, quantifying the degree of rule satisfaction, is learned from expert demonstrations using a Conditional Variational Autoencoder (CVAE). This learned margin is then applied in the MPC process to guide the prioritization or exclusion of rules. ...”
    Полный текст
    Статья
  6. 106
  7. 107

    Marked point process variational autoencoder with applications to unsorted spiking activities. по Ryohei Shibue, Tomoharu Iwata

    Опубликовано 2024-12-01
    “...To address this limitation, we propose a new joint mark intensity model based on a variational autoencoder, capable of representing the dependency structure of unsorted spikes on observed covariates or hidden states in a data-driven manner. ...”
    Полный текст
    Статья
  8. 108

    Nonparametric Representation of Neutron Star Equation of State Using Variational Autoencoder по Ming-Zhe Han, Shao-Peng Tang, Yi-Zhong Fan

    Опубликовано 2023-01-01
    “...We introduce a new nonparametric representation of the neutron star (NS) equation of state (EOS) by using the variational autoencoder (VAE). As a deep neural network, the VAE is frequently used for dimensionality reduction since it can compress input data to a low-dimensional latent space using the encoder component and then reconstruct the data using the decoder component. ...”
    Полный текст
    Статья
  9. 109
  10. 110

    Property-guided generation of complex polymer topologies using variational autoencoders по Shengli Jiang, Adji Bousso Dieng, Michael A. Webb

    Опубликовано 2024-06-01
    “...Here, we use a generative machine learning model based on variational autoencoders and data generated from molecular dynamics simulations to design polymer topologies that exhibit target properties. ...”
    Полный текст
    Статья
  11. 111
  12. 112

    Improving Data Generalization With Variational Autoencoders for Network Traffic Anomaly Detection по Mehrnoosh Monshizadeh, Vikramajeet Khatri, Marah Gamdou, Raimo Kantola, Zheng Yan

    Опубликовано 2021-01-01
    “...To solve the mentioned challenges, we propose a combined architecture comprising a Conditional Variational AutoEncoder (CVAE) and a Random Forest (RF) classifier to automatically learn similarity among input features, provide data distribution in order to extract discriminative features from original features, and finally classify various types of attacks. ...”
    Полный текст
    Статья
  13. 113
  14. 114

    Rapid Generation of Kilonova Light Curves Using Conditional Variational Autoencoder по Surojit Saha, Michael J. Williams, Laurence Datrier, Fergus Hayes, Matt Nicholl, Albert K. H. Kong, Martin Hendry, IK Siong Heng, Gavin P. Lamb, En-Tzu Lin, Daniel Williams

    Опубликовано 2024-01-01
    “...Here, we use a conditional variational autoencoder (CVAE) trained on light-curve data from two kilonova models having different temporal lengths, and consequently, generate kilonova light curves rapidly based on physical parameters of our choice with good accuracy. ...”
    Полный текст
    Статья
  15. 115

    Autonomous design of new chemical reactions using a variational autoencoder по Robert Tempke, Terence Musho

    Опубликовано 2022-03-01
    “...Here, the authors develop an artificial intelligence model based on a variational autoencoder to synthetically generate continuous datasets and generate new chemical reactions in a less biased way, by sampling the entirety of the solution space....”
    Полный текст
    Статья
  16. 116

    Degradation assessment for the ball screw with variational autoencoder and kernel density estimation по Juan Wen, Hongli Gao

    Опубликовано 2018-09-01
    “...First, the raw data collected in the normal status are used to train the variational autoencoder, and then, the online raw signals are input into the learned variational autoencoder to construct health indicators. ...”
    Полный текст
    Статья
  17. 117

    Automated defect detection in nanomaterial-coated-fabrics using variational autoencoder по Nguyen Ngoc Tram, Kim Jooyong

    Опубликовано 2024-11-01
    “...This paper introduces an unsupervised method for detecting regions with a high density of nanomaterials on coated fabric using Variational Autoencoder, a generative model capable of learning dominant features of the input data and generating similar outputs. ...”
    Полный текст
    Статья
  18. 118

    Unsupervised flood detection on SAR time series using variational autoencoder по Ritu Yadav, Andrea Nascetti, Hossein Azizpour, Yifang Ban

    Опубликовано 2024-02-01
    “...The proposed model is based on a spatiotemporal variational autoencoder, trained with reconstruction and contrastive learning techniques. ...”
    Полный текст
    Статья
  19. 119

    Improving Variational Autoencoders for New Physics Detection at the LHC With Normalizing Flows по Pratik Jawahar, Thea Aarrestad, Nadezda Chernyavskaya, Maurizio Pierini, Kinga A. Wozniak, Kinga A. Wozniak, Jennifer Ngadiuba, Jennifer Ngadiuba, Javier Duarte, Steven Tsan

    Опубликовано 2022-02-01
    “...We investigate how to improve new physics detection strategies exploiting variational autoencoders and normalizing flows for anomaly detection at the Large Hadron Collider. ...”
    Полный текст
    Статья
  20. 120