-
101
Combining variational autoencoders and physical bias for improved microscopy data analysis
Опубликовано 2023-01-01Предметы: Полный текст
Статья -
102
Drug-protein interaction prediction via variational autoencoders and attention mechanisms
Опубликовано 2022-10-01Предметы: Полный текст
Статья -
103
Integrated multi-omics analysis of ovarian cancer using variational autoencoders
Опубликовано 2021-03-01“...DL-based dimensionality reduction technique, including variational autoencoder (VAE), is a potential solution to balance high dimensional multi-omics data. ...”
Полный текст
Статья -
104
Data augmentation using Variational Autoencoders for improvement of respiratory disease classification.
Опубликовано 2022-01-01“...This work aims to synthesize respiratory sounds of various categories using variants of Variational Autoencoders like Multilayer Perceptron VAE (MLP-VAE), Convolutional VAE (CVAE) Conditional VAE and compare the influence of augmenting the imbalanced dataset on the performance of various lung sound classification models. ...”
Полный текст
Статья -
105
Model Predictive Control with Variational Autoencoders for Signal Temporal Logic Specifications
Опубликовано 2024-07-01“...A robustness margin, quantifying the degree of rule satisfaction, is learned from expert demonstrations using a Conditional Variational Autoencoder (CVAE). This learned margin is then applied in the MPC process to guide the prioritization or exclusion of rules. ...”
Полный текст
Статья -
106
Variational Autoencoders for Cancer Data Integration: Design Principles and Computational Practice
Опубликовано 2019-12-01Предметы: Полный текст
Статья -
107
Marked point process variational autoencoder with applications to unsorted spiking activities.
Опубликовано 2024-12-01“...To address this limitation, we propose a new joint mark intensity model based on a variational autoencoder, capable of representing the dependency structure of unsorted spikes on observed covariates or hidden states in a data-driven manner. ...”
Полный текст
Статья -
108
Nonparametric Representation of Neutron Star Equation of State Using Variational Autoencoder
Опубликовано 2023-01-01“...We introduce a new nonparametric representation of the neutron star (NS) equation of state (EOS) by using the variational autoencoder (VAE). As a deep neural network, the VAE is frequently used for dimensionality reduction since it can compress input data to a low-dimensional latent space using the encoder component and then reconstruct the data using the decoder component. ...”
Полный текст
Статья -
109
Marked point process variational autoencoder with applications to unsorted spiking activities
Опубликовано 2024-12-01Полный текст
Статья -
110
Property-guided generation of complex polymer topologies using variational autoencoders
Опубликовано 2024-06-01“...Here, we use a generative machine learning model based on variational autoencoders and data generated from molecular dynamics simulations to design polymer topologies that exhibit target properties. ...”
Полный текст
Статья -
111
Representation Learning with a Variational Autoencoder for Predicting Nitrogen Requirement in Rice
Опубликовано 2022-11-01Предметы: Полный текст
Статья -
112
Improving Data Generalization With Variational Autoencoders for Network Traffic Anomaly Detection
Опубликовано 2021-01-01“...To solve the mentioned challenges, we propose a combined architecture comprising a Conditional Variational AutoEncoder (CVAE) and a Random Forest (RF) classifier to automatically learn similarity among input features, provide data distribution in order to extract discriminative features from original features, and finally classify various types of attacks. ...”
Полный текст
Статья -
113
Fault Detection Based on Vibration Measurements and Variational Autoencoder-Desirability Function
Опубликовано 2024-01-01Предметы: Полный текст
Статья -
114
Rapid Generation of Kilonova Light Curves Using Conditional Variational Autoencoder
Опубликовано 2024-01-01“...Here, we use a conditional variational autoencoder (CVAE) trained on light-curve data from two kilonova models having different temporal lengths, and consequently, generate kilonova light curves rapidly based on physical parameters of our choice with good accuracy. ...”
Полный текст
Статья -
115
Autonomous design of new chemical reactions using a variational autoencoder
Опубликовано 2022-03-01“...Here, the authors develop an artificial intelligence model based on a variational autoencoder to synthetically generate continuous datasets and generate new chemical reactions in a less biased way, by sampling the entirety of the solution space....”
Полный текст
Статья -
116
Degradation assessment for the ball screw with variational autoencoder and kernel density estimation
Опубликовано 2018-09-01“...First, the raw data collected in the normal status are used to train the variational autoencoder, and then, the online raw signals are input into the learned variational autoencoder to construct health indicators. ...”
Полный текст
Статья -
117
Automated defect detection in nanomaterial-coated-fabrics using variational autoencoder
Опубликовано 2024-11-01“...This paper introduces an unsupervised method for detecting regions with a high density of nanomaterials on coated fabric using Variational Autoencoder, a generative model capable of learning dominant features of the input data and generating similar outputs. ...”
Полный текст
Статья -
118
Unsupervised flood detection on SAR time series using variational autoencoder
Опубликовано 2024-02-01“...The proposed model is based on a spatiotemporal variational autoencoder, trained with reconstruction and contrastive learning techniques. ...”
Полный текст
Статья -
119
Improving Variational Autoencoders for New Physics Detection at the LHC With Normalizing Flows
Опубликовано 2022-02-01“...We investigate how to improve new physics detection strategies exploiting variational autoencoders and normalizing flows for anomaly detection at the Large Hadron Collider. ...”
Полный текст
Статья -
120
Dual Branch Feature Representation and Variational Autoencoder for Panchromatic and Multispectral Classification
Опубликовано 2024-01-01Полный текст
Статья