Showing 121 - 140 results of 187 for search '(("tuning method") OR ("learning methods"))', query time: 0.12s Refine Results
  1. 121

    Transferring a deep learning model from healthy subjects to stroke patients in a motor imagery brain-computer interface by Nagarajan, Aarthy, Robinson, Neethu, Ang, Kai Keng, Chua, Karen Sui Geok, Chew, Effie, Guan, Cuntai

    Published 2024
    “…Motor imagery (MI) brain-computer interfaces (BCIs) based on electroencephalogram (EEG) have been developed primarily for stroke rehabilitation, however, due to limited stroke data, current deep learning methods for cross-subject classification rely on healthy data. …”
    Get full text
    Journal Article
  2. 122

    Self-supervised Self2Self denoising strategy for OCT speckle reduction with a single noisy image by Ge, Chenkun, Yu, Xiaojun, Yuan, Miao, Fan, Zeming, Chen, Jinna, Shum, Perry Ping, Liu, Linbo

    Published 2024
    “…Results compared with those of the existing methods demonstrate that S2Snet not only outperforms those existing self-supervised deep learning methods but also achieves better performances than those non-deep learning ones in different cases. …”
    Get full text
    Journal Article
  3. 123

    Building occupant sensing : occupancy prediction and behavior recognition by Zhu, Qingchang

    Published 2018
    “…To achieve these goals in smart buildings, it is necessary to study the problem of occupant sensing by leveraging machine learning methods to understand occupants based on sensor signals. …”
    Get full text
    Get full text
    Thesis
  4. 124

    Distinctive antibody responses to Mycobacterium tuberculosis in pulmonary and brain infection by Spatola, M, Nziza, N, Irvine, EB, Cizmeci, D, Jung, W, Van, LH, Nhat, LTH, Ha, VTN, Phu, NH, Nghia, HDT, Thwaites, GE, Lauffenburger, DA, Fortune, S, Thuong, NTT, Alter, G

    Published 2024
    “…Antibody studies included analysis of immunoglobulin isotypes (IgG, IgM, IgA) and subclass levels (IgG1–4) and the capacity of <i>M. tuberculosis</i>-specific antibodies to bind to Fc receptors or C1q and to activate innate immune effector functions (complement and natural killer cell activation; monocyte or neutrophil phagocytosis). Machine learning methods were applied to characterize serum and CSF responses in TBM, identify prognostic factors associated with disease severity, and define the key antibody features that distinguish TBM from pulmonary TB. …”
    Journal article
  5. 125

    Microbial communities: network reconstruction and control by Fu, A

    Published 2024
    “…It proposes adaptive learning methods and experimental design rules to transform PAG-inferred structures into fully identified causal models, thus enhancing our understanding of microbial dynamics and providing a systematic approach for future research in causal inference within complex biological systems. …”
    Thesis
  6. 126

    Measuring the predictability of life outcomes with a scientific mass collaboration by Salganik, Matthew J., Lundberg, Ian, Kindel, Alexander T., Ahearn, Caitlin E., Al-Ghoneim, Khaled, Almaatouq, Abdullah, Altschul, Drew M., Brand, Jennie E., Carnegie, Nicole Bohme, Compton, Ryan James, Datta, Debanjan, Davidson, Thomas, Filippova, Anna, Gilroy, Connor, Goode, Brian J., Jahani, Eaman, Kashyap, Ridhi, Kirchner, Antje, McKay, Stephen, Morgan, Allison C., Pentland, Alex, Polimis, Kivan, Raes, Louis, Rigobon, Daniel E., Roberts, Claudia V., Stanescu, Diana M., Suhara, Yoshihiko, Usmani, Adaner, Wang, Erik H., Adem, Muna, Alhajri, Abdulla, AlShebli, Bedoor, Amin, Redwane, Amos, Ryan B., Argyle, Lisa P., Baer-Bositis, Livia, Buchi, Moritz, Chung, Bo-Ryehn, Eggert, William, Faletto, Gregory, Fan, Zhilin, Freese, Jeremy, Gadgil, Tejomay, Gagne ́, Josh, Gao, Yue, Halpern-Manners, Andrew, Hashim, Sonia P., Hausen, Sonia, He, Guanhua, Higuera, Kimberly, Hogan, Bernie, Horwitz, Ilana M., Hummel, Lisa M., Jain, Naman, Jin, Kun, Jurgens, David, Kaminski, Patrick, Karapetyan, Areg, Kim, E. H., Leizman, Ben, Liu, Naijia, Moser, Malte, Mack, Andrew E., Mahajan, Mayank, Mandell, Noah, Marahrens, Helge, Mercado-Garcia, Diana, Mocz, Viola, Mueller-Gastell, Katariina, Musse, Ahmed, Niu, Qiankun, Nowak, William, Omidvar, Hamidreza, Or, Andrew, Ouyang, Karen, Pinto, Katy M., Porter, Ethan, Porter, Kristin E., Qian, Crystal, Rauf, Tamkinat, Sargsyan, Anahit, Schaffner, Thomas, Schnabel, Landon, Schonfeld, Bryan, Sender, Ben, Tang, Jonathan D., Tsurkov, Emma, van Loon, Austin, Varol, Onur, Wang, Xiafei, Wang, Zhi, Wang, Julia, Wang, Flora, Weissman, Samantha, Whitaker, Kirstie, Wolters, Maria K., Woon, Wei Lee, Wu, James, Wu, Catherine, Yang, Kengran, Yin, Jingwen, Zhao, Bingyu, Zhu, Chenyun, Brooks-Gunn, Jeanne, Engelhardt, Barbara E., Hardt, Moritz, Knox, Dean, Levy, Karen, Narayanan, Arvind, Stewart, Brandon M., Watts, Duncan J., McLanahan, Sara

    Published 2021
    “…Despite using a rich dataset and applying machine-learning methods optimized for prediction, the best predictions were not very accurate and were only slightly better than those from a simple benchmark model. …”
    Get full text
    Article
  7. 127

    Feature extraction from EEG signals and regularization for brain-computer interface by Mishuhina, Vasilisa

    Published 2020
    “…The goal of this research is to improve feature extraction and regularization of EEG signals using machine learning methods and hence achieve better results during the classification of the signals for motor imagery BCI (MI-BCI). …”
    Get full text
    Thesis-Doctor of Philosophy
  8. 128

    Natural robustness of machine learning in the open world by Wei, Hongxin

    Published 2023
    “…Secondly, classic machine learning methods are built on the i.i.d. assumption that training and testing data are independent and identically distributed. …”
    Get full text
    Thesis-Doctor of Philosophy
  9. 129

    Sensor-based human activity recognition via zero-shot learning by Wang, Wei

    Published 2019
    “…For problems under this problem setting, as there are no labeled training instances belonging to the unseen classes, the zero-shot learning methods are used. We focus on three problems under this setting. …”
    Get full text
    Get full text
    Thesis
  10. 130

    Offline eLearning for undergraduates in health professions : a systematic review of the impact on knowledge, skills, attitudes and satisfaction by Wark, Petra A., Rasmussen, Kristine, Belisario, José Marcano, Molina, Joseph Antonio, Loong, Stewart Lee, Cotic, Ziva, Papachristou, Nikos, Riboli–Sasco, Eva, Car, Lorainne Tudor, Musulanov, Eve Marie, Zhang, Yanfeng, Kunz, Holger, George, Pradeep Paul, Heng, Bee Hoon, Wheeler, Erica Lynette, Al Shorbaji, Najeeb, Svab, Igor, Atun, Rifat, Majeed, Azeem, Car, Josip

    Published 2019
    “…To inform investments in offline eLearning, we need to establish its effectiveness in terms of gaining knowledge and skills, students’ satisfaction and attitudes towards eLearning. Methods: We conducted a systematic review of offline eLearning for students enrolled in undergraduate, health–related university degrees. …”
    Get full text
    Get full text
    Get full text
    Journal Article
  11. 131

    Digital problem-based learning in health professions : systematic review and meta-analysis by the digital health education collaboration by Car, Lorainne Tudor, Kyaw, Bhone Myint, Dunleavy, Gerard, Smart, Neil A., Semwal, Monika, Rotgans, Jerome Ingmar, Low-Beer, Naomi, Campbell, James

    Published 2019
    “…We included studies that compared the effectiveness of DPBL with traditional learning methods or other forms of digital education in improving health professionals’ knowledge, skills, attitudes, and satisfaction. …”
    Get full text
    Get full text
    Journal Article
  12. 132
  13. 133

    Brain computer interface for post-stroke motor rehabilitation by Mane, Ravikiran Tanaji

    Published 2021
    “…Moving ahead, we analyze the classification performance of proposed and baseline deep learning architectures and traditional machine learning methods for MI detection in 25 chronic stroke patients undergoing three different BCI-based motor rehabilitation interventions for 2/4 weeks. …”
    Get full text
    Thesis-Doctor of Philosophy
  14. 134

    Fabrication and characterization of Algan/Gan high electron mobility transistors on silicon by Tham, Wai Hoe

    Published 2016
    “…Therefore, the current experimental studies suggest that the Ge doping approach is more suitable as a VTH tuning method. Although the fabrication cost of GaN-based devices can be reduced significantly through the incorporation with Si technology, there are several challenges which impede the incorporation of GaN-based devices with Si technology. …”
    Get full text
    Thesis
  15. 135
  16. 136

    Multi-site benchmark classification of major depressive disorder using machine learning on cortical and subcortical measures by Belov, Vladimir, Erwin-Grabner, Tracy, Aghajani, Moji, Aleman, Andre, Amod, Alyssa R., Basgoze, Zeynep, Benedetti, Francesco, Besteher, Bianca, Bülow, Robin, Ching, Christopher R. K., Connolly, Colm G., Cullen, Kathryn, Davey, Christopher G., Dima, Danai, Dols, Annemiek, Evans, Jennifer W., Fu, Cynthia H. Y., Gonul, Ali Saffet, Gotlib, Ian H., Grabe, Hans J., Groenewold, Nynke, Hamilton, J. Paul, Harrison, Ben J., Ho, Tiffany C., Mwangi, Benson, Jaworska, Natalia, Jahanshad, Neda, Klimes-Dougan, Bonnie, Koopowitz, Sheri-Michelle, Lancaster, Thomas, Li, Meng, Linden, David E. J., MacMaster, Frank P., Mehler, David M. A., Melloni, Elisa, Mueller, Bryon A., Ojha, Amar, Oudega, Mardien L., Penninx, Brenda W. J. H., Poletti, Sara, Pomarol-Clotet, Edith, Portella, Maria J., Pozzi, Elena, Reneman, Liesbeth, Sacchet, Matthew D., Sämann, Philipp G., Schrantee, Anouk, Sim, Kang, Soares, Jair C., Stein, Dan J., Thomopoulos, Sophia I., Uyar-Demir, Aslihan, van der Wee, Nic J. A., van der Werff, Steven J. A., Völzke, Henry, Whittle, Sarah, Wittfeld, Katharina, Wright, Margaret J., Wu, Mon-Ju, Yang, Tony T., Zarate, Carlos, Veltman, Dick J., Schmaal, Lianne, Thompson, Paul M., Goya-Maldonado, Roberto

    Published 2024
    “…Future studies incorporating higher dimensional brain imaging/phenotype features, and/or using more advanced machine and deep learning methods may yield more encouraging prospects.…”
    Get full text
    Journal Article
  17. 137

    Deep reinforcement learning for optimal resource allocation by Ng, Steffi Si Yu

    Published 2022
    “…In addition, this project will practice parameter tuning methods on the algorithm to obtain a parameter set that can achieve the most optimal result.…”
    Get full text
    Final Year Project (FYP)
  18. 138

    Night vision with unmanned surface vehicle (USV) by Ang, Claryl Hui Ern

    Published 2021
    “…Besides that, this research also involves sourcing code on a deep learning method for transferring night-time images to daytime images. …”
    Get full text
    Final Year Project (FYP)
  19. 139

    Placing objects in context via inpainting for out-of-distribution segmentation by De Jorge, P, Volpi, R, Dokania, PK, Torr, PHS, Rogez, G

    Published 2024
    “…In our experiments, we present different anomaly segmentation datasets based on POC-generated data and show that POC can improve the performance of recent state-of-the-art anomaly fine-tuning methods across several standardized benchmarks. …”
    Conference item
  20. 140

    Active learning for ontological event extraction incorporating named entity recognition and unknown word handling by Han, Xu, Kim, Jung-jae, Kwoh, Chee Keong

    Published 2016
    “…We also apply our active learning method for the task of named entity recognition. …”
    Get full text
    Get full text
    Journal Article