Showing 321 - 340 results of 967 for search '(((pin OR pick) OR fine) OR (((aina OR (anne OR anna)) OR ((cheng OR spent) OR lingao)) OR ping))', query time: 0.08s Refine Results
  1. 321
  2. 322
  3. 323
  4. 324
  5. 325
  6. 326
  7. 327

    Quality prediction and classifcation of resistance spot weld using artifcial neural network with open‑sourced, self‑executable andGUI‑based application tool Q‑Check by Abd Halim, Suhaila, Yupiter H. P. Manurung, Yupiter H. P. Manurung, Muhamad Aiman Raziq, Muhamad Aiman Raziq, ChengYee Low, ChengYee Low, Rohmad, Muhammad Saufy, John R. C. Dizon, John R. C. Dizon, Vladimir S. Kachinskyi, Vladimir S. Kachinskyi

    Published 2023
    “…Results showed that this low-cost application tool Q-Check based on ANN models can predict with 80% training and 20% test set on TSLBC with an accuracy of 87.220%, 92.865% and 93.670% for GD, SGD and LM algorithms respectively while on WQC 62.5% for GD and 75% for both SGD and LM. …”
    Get full text
    Article
  8. 328
  9. 329
  10. 330
  11. 331
  12. 332
  13. 333
  14. 334
  15. 335
  16. 336

    Quality prediction and classifcation of resistance spot weld using artifcial neural network with open‑sourced, self‑executable andGUI‑based application tool Q‑Check by SuhailaAbd Halim, SuhailaAbd Halim, Yupiter H. P. Manurung, Yupiter H. P. Manurung, MuhamadAiman Raziq, MuhamadAiman Raziq, ChengYee Low, ChengYee Low, Muhammad Saufy Rohmad, Muhammad Saufy Rohmad, John R. C. Dizon, John R. C. Dizon, Vladimir S. Kachinskyi, Vladimir S. Kachinskyi

    Published 2023
    “…Results showed that this low-cost application tool Q-Check based on ANN models can predict with 80% training and 20% test set on TSLBC with an accuracy of 87.220%, 92.865% and 93.670% for GD, SGD and LM algorithms respectively while on WQC 62.5% for GD and 75% for both SGD and LM. …”
    Get full text
    Article
  17. 337

    Quality prediction and classifcation of resistance spot weld using artifcial neural network with open‑sourced, self‑executable andGUI‑based application tool Q‑Check by SuhailaAbd Halim, SuhailaAbd Halim, Yupiter H. P. Manurung, Yupiter H. P. Manurung, MuhamadAiman Raziq, MuhamadAiman Raziq, ChengYee Low, ChengYee Low, Muhammad Saufy Rohmad, Muhammad Saufy Rohmad, John R. C. Dizon, John R. C. Dizon, Vladimir S. Kachinskyi, Vladimir S. Kachinskyi

    Published 2023
    “…Results showed that this low-cost application tool Q-Check based on ANN models can predict with 80% training and 20% test set on TSLBC with an accuracy of 87.220%, 92.865% and 93.670% for GD, SGD and LM algorithms respectively while on WQC 62.5% for GD and 75% for both SGD and LM. …”
    Get full text
    Article
  18. 338
  19. 339
  20. 340