Showing 1 - 20 results of 52 for search '((elsa OR ((meld OR melsa) OR mella)) OR (alba OR ala))', query time: 0.23s Refine Results
  1. 1

    The ALA, public libraries and the Great Depression by Luyt, Brendan

    Published 2012
    “…Librarians were encouraged by the ALA to join the fight for ‘constructive economy’ that would reform and strengthen the role of public institutions. …”
    Get full text
    Get full text
    Journal Article
  2. 2

    GaAs/AlAs/AlGaAs quantum well infrared photodetector by Fan, Weijun

    Published 2008
    “…In this project, the n-type QW structures of GaAs/AlGaAs and GaAs/AlAs/AlGaAs with specific parameters are grown by all solid source MBE on the GaAs substrates. …”
    Get full text
    Research Report
  3. 3

    The effects of ALA accreditation standards on library education programs accredited by the American Library Association by Mounce, Michael E.

    Published 2021
    “…This article presents the results of a survey that focused on the perceived effects of the six American Library Association (ALA) accreditation standards on ALA accredited library education programs in the United States. …”
    Get full text
    Journal Article
  4. 4

    Beyond MELD Score: Association of Machine Learning-derived CT Body Composition with 90-Day Mortality Post Transjugular Intrahepatic Portosystemic Shunt Placement by Elhakim, Tarig, Mansur, Arian, Kondo, Jordan, Omar, Omar M. F., Ahmed, Khalid, Tabari, Azadeh, Brea, Allison, Ndakwah, Gabriel, Iqbal, Shams, Allegretti, Andrew S., Fintelmann, Florian J., Wehrenberg-Klee, Eric, Bridge, Christopher, Daye, Dania

    Published 2024
    “…Multivariable logistic regression showed that SMA (OR = 0.97, p < 0.01), SMI (OR = 0.94, p = 0.03), SFA (OR = 0.99, p = 0.01), and VFA (OR = 0.99, p = 0.02) remained significant predictors of 90-day mortality when adjusted for MELD score. ROC curve analysis demonstrated that including SMA, SFA, and VFA improves the predictive power of MELD score in predicting 90-day mortality after TIPS (AUC, 0.84; 95% CI: 0.77, 0.91; p = 0.02). …”
    Get full text
    Article
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19

    AI is a viable alternative to high throughput screening: a 318-target study by Wallach, Izhar, Bernard, Denzil, Nguyen, Kong, Ho, Gregory, Morrison, Adrian, Stecula, Adrian, Rosnik, Andreana, O’Sullivan, Ann Marie, Davtyan, Aram, Samudio, Ben, Thomas, Bill, Worley, Brad, Butler, Brittany, Laggner, Christian, Thayer, Desiree, Moharreri, Ehsan, Friedland, Greg, Truong, Ha, van den Bedem, Henry, Ng, Ho Leung, Stafford, Kate, Sarangapani, Krishna, Giesler, Kyle, Ngo, Lien, Mysinger, Michael, Ahmed, Mostafa, Anthis, Nicholas J., Henriksen, Niel, Gniewek, Pawel, Eckert, Sam, de Oliveira, Saulo, Suterwala, Shabbir, PrasadPrasad, Srimukh Veccham Krishna, Shek, Stefani, Contreras, Stephanie, Hare, Stephanie, Palazzo, Teresa, O’Brien, Terrence E., Van Grack, Tessa, Williams, Tiffany, Chern, Ting-Rong, Kenyon, Victor, Lee, Andreia H., Cann, Andrew B., Bergman, Bastiaan, Anderson, Brandon M., Cox, Bryan D., Warrington, Jeffrey M., Sorenson, Jon M., Goldenberg, Joshua M., Young, Matthew A., DeHaan, Nicholas, Pemberton, Ryan P., Schroedl, Stefan, Abramyan, Tigran M., Gupta, Tushita, Mysore, Venkatesh, Presser, Adam G., Ferrando, Adolfo A., Andricopulo, Adriano D., Ghosh, Agnidipta, Ayachi, Aicha Gharbi, Mushtaq, Aisha, Shaqra, Ala M., Toh, Alan Kie Leong, Smrcka, Alan V., Ciccia, Alberto, de Oliveira, Aldo Sena, Sverzhinsky, Aleksandr, de Sousa, Alessandra Mara, Agoulnik, Alexander I., Kushnir, Alexander, Freiberg, Alexander N., Statsyuk, Alexander V., Gingras, Alexandre R., Degterev, Alexei, Tomilov, Alexey, Vrielink, Alice, Garaeva, Alisa A., Bryant-Friedrich, Amanda, Caflisch, Amedeo, Patel, Amit K., Rangarajan, Amith Vikram, Matheeussen, An, Battistoni, Andrea, Caporali, Andrea, Chini, Andrea, Ilari, Andrea, Mattevi, Andrea, Foote, Andrea Talbot, Trabocchi, Andrea, Stahl, Andreas, Herr, Andrew B., Berti, Andrew, Freywald, Andrew, Reidenbach, Andrew G., Lam, Andrew, Cuddihy, Andrew R., White, Andrew, Taglialatela, Angelo

    Published 2024
    Get full text
    Journal Article
  20. 20

    Heart failure risk stratification using artificial intelligence applied to electrocardiogram images: a multinational study by Dhingra, LS, Aminorroaya, A, Sangha, V, Pedroso, AF, Asselbergs, FW, Brant, LCC, Barreto, SM, Ribeiro, ALP, Krumholz, HM, Oikonomou, EK, Khera, R

    Published 2025
    “…Model discrimination was 0.718 in YNHHS, 0.769 in UKB, and 0.810 in ELSA-Brasil. In YNHHS and ELSA-Brasil, incorporating AI-ECG with PCP-HF yielded a significant improvement in discrimination over PCP-HF alone. …”
    Journal article