The identification and control of a finger exoskeleton for grasping rehabilitation
This paper evaluates the efficacy of different classical control architectures in performing grasping motion. The exoskeleton system was obtained via system identification method in which the input and output data was measured by means of current sensor (ACS712) and encoder attached to a DC geared m...
Main Authors: | , , , , , , |
---|---|
Other Authors: | |
Format: | Book Chapter |
Language: | English English |
Published: |
Springer Singapore
2018
|
Subjects: | |
Online Access: | http://umpir.ump.edu.my/id/eprint/21163/7/Identification%20and%20Control%20of%20a%20finger%20exoskeleton-fkp-2018-1.pdf http://umpir.ump.edu.my/id/eprint/21163/13/book41%20The%20identification%20and%20control%20of%20a%20finger%20exoskeleton%20for%20grasping%20rehabilitation.pdf |
_version_ | 1825812080877371392 |
---|---|
author | Zahari, Taha Muhammad Muaz, Alim Anwar, P. P. Abdul Majeed Muhammad Aizzat, Zakaria Mohd Azraai, Mohd Razman Mohd Ali Hanafiah, Shaharudin M. H. A., Hassan |
author2 | Mohd Hasnun Ariff, Hassan |
author_facet | Mohd Hasnun Ariff, Hassan Zahari, Taha Muhammad Muaz, Alim Anwar, P. P. Abdul Majeed Muhammad Aizzat, Zakaria Mohd Azraai, Mohd Razman Mohd Ali Hanafiah, Shaharudin M. H. A., Hassan |
author_sort | Zahari, Taha |
collection | UMP |
description | This paper evaluates the efficacy of different classical control architectures in performing grasping motion. The exoskeleton system was obtained via system identification method in which the input and output data was measured by means of current sensor (ACS712) and encoder attached to a DC geared motor (SPG30e-270k). The data obtained is split with a ratio of 70:30 for estimation and validation, respectively. The transfer function of the system is evaluated by varying the number of poles and zeros that are able to fit well with validation data. The performance of the classical P, PI, PD and PID control techniques were then evaluated in its ability to track the desired trajectory. It was demonstrated from the study that the PID controller provides the least steady state error as well as a reasonably fast settling time. |
first_indexed | 2024-03-06T12:23:51Z |
format | Book Chapter |
id | UMPir21163 |
institution | Universiti Malaysia Pahang |
language | English English |
last_indexed | 2024-03-06T12:23:51Z |
publishDate | 2018 |
publisher | Springer Singapore |
record_format | dspace |
spelling | UMPir211632022-11-07T06:31:20Z http://umpir.ump.edu.my/id/eprint/21163/ The identification and control of a finger exoskeleton for grasping rehabilitation Zahari, Taha Muhammad Muaz, Alim Anwar, P. P. Abdul Majeed Muhammad Aizzat, Zakaria Mohd Azraai, Mohd Razman Mohd Ali Hanafiah, Shaharudin M. H. A., Hassan TA Engineering (General). Civil engineering (General) TK Electrical engineering. Electronics Nuclear engineering This paper evaluates the efficacy of different classical control architectures in performing grasping motion. The exoskeleton system was obtained via system identification method in which the input and output data was measured by means of current sensor (ACS712) and encoder attached to a DC geared motor (SPG30e-270k). The data obtained is split with a ratio of 70:30 for estimation and validation, respectively. The transfer function of the system is evaluated by varying the number of poles and zeros that are able to fit well with validation data. The performance of the classical P, PI, PD and PID control techniques were then evaluated in its ability to track the desired trajectory. It was demonstrated from the study that the PID controller provides the least steady state error as well as a reasonably fast settling time. Springer Singapore Mohd Hasnun Ariff, Hassan 2018-04-28 Book Chapter PeerReviewed pdf en http://umpir.ump.edu.my/id/eprint/21163/7/Identification%20and%20Control%20of%20a%20finger%20exoskeleton-fkp-2018-1.pdf pdf en http://umpir.ump.edu.my/id/eprint/21163/13/book41%20The%20identification%20and%20control%20of%20a%20finger%20exoskeleton%20for%20grasping%20rehabilitation.pdf Zahari, Taha and Muhammad Muaz, Alim and Anwar, P. P. Abdul Majeed and Muhammad Aizzat, Zakaria and Mohd Azraai, Mohd Razman and Mohd Ali Hanafiah, Shaharudin and M. H. A., Hassan (2018) The identification and control of a finger exoskeleton for grasping rehabilitation. In: Intelligent Manufacturing & Mechatronics: Proceedings of Symposium, 29 January 2018, Pekan, Pahang, Malaysia. Lecture Notes in Mechanical Engineering . Springer Singapore, Singapore, pp. 177-182. ISBN 9789811087875 https://doi.org/10.1007/978-981-10-8788-2_17 DOI: 10.1007/978-981-10-8788-2_17 |
spellingShingle | TA Engineering (General). Civil engineering (General) TK Electrical engineering. Electronics Nuclear engineering Zahari, Taha Muhammad Muaz, Alim Anwar, P. P. Abdul Majeed Muhammad Aizzat, Zakaria Mohd Azraai, Mohd Razman Mohd Ali Hanafiah, Shaharudin M. H. A., Hassan The identification and control of a finger exoskeleton for grasping rehabilitation |
title | The identification and control of a finger exoskeleton for grasping rehabilitation |
title_full | The identification and control of a finger exoskeleton for grasping rehabilitation |
title_fullStr | The identification and control of a finger exoskeleton for grasping rehabilitation |
title_full_unstemmed | The identification and control of a finger exoskeleton for grasping rehabilitation |
title_short | The identification and control of a finger exoskeleton for grasping rehabilitation |
title_sort | identification and control of a finger exoskeleton for grasping rehabilitation |
topic | TA Engineering (General). Civil engineering (General) TK Electrical engineering. Electronics Nuclear engineering |
url | http://umpir.ump.edu.my/id/eprint/21163/7/Identification%20and%20Control%20of%20a%20finger%20exoskeleton-fkp-2018-1.pdf http://umpir.ump.edu.my/id/eprint/21163/13/book41%20The%20identification%20and%20control%20of%20a%20finger%20exoskeleton%20for%20grasping%20rehabilitation.pdf |
work_keys_str_mv | AT zaharitaha theidentificationandcontrolofafingerexoskeletonforgraspingrehabilitation AT muhammadmuazalim theidentificationandcontrolofafingerexoskeletonforgraspingrehabilitation AT anwarppabdulmajeed theidentificationandcontrolofafingerexoskeletonforgraspingrehabilitation AT muhammadaizzatzakaria theidentificationandcontrolofafingerexoskeletonforgraspingrehabilitation AT mohdazraaimohdrazman theidentificationandcontrolofafingerexoskeletonforgraspingrehabilitation AT mohdalihanafiahshaharudin theidentificationandcontrolofafingerexoskeletonforgraspingrehabilitation AT mhahassan theidentificationandcontrolofafingerexoskeletonforgraspingrehabilitation AT zaharitaha identificationandcontrolofafingerexoskeletonforgraspingrehabilitation AT muhammadmuazalim identificationandcontrolofafingerexoskeletonforgraspingrehabilitation AT anwarppabdulmajeed identificationandcontrolofafingerexoskeletonforgraspingrehabilitation AT muhammadaizzatzakaria identificationandcontrolofafingerexoskeletonforgraspingrehabilitation AT mohdazraaimohdrazman identificationandcontrolofafingerexoskeletonforgraspingrehabilitation AT mohdalihanafiahshaharudin identificationandcontrolofafingerexoskeletonforgraspingrehabilitation AT mhahassan identificationandcontrolofafingerexoskeletonforgraspingrehabilitation |