Missing-values imputation algorithms for microarray gene expression data
In gene expression studies, missing values are a common problem with important consequences for the interpretation of the final data (Satija et al., Nat Biotechnol 33(5):495, 2015). Numerous bioinformatics examination tools are used for cancer prediction, including the data set matrix (Bailey et al....
Hoofdauteurs: | Moorthy, Kohbalan, Jaber, Aws Naser, Mohd Arfian, Ismail, Ernawan, Ferda, Mohd Saberi, Mohamad, Safaai, Deris |
---|---|
Andere auteurs: | Bolón-Canedo, Verónica |
Formaat: | Hoofdstuk |
Taal: | English English English |
Gepubliceerd in: |
Humana Press
2019
|
Onderwerpen: | |
Online toegang: | http://umpir.ump.edu.my/id/eprint/25080/1/978-1-4939-9442-7_12 http://umpir.ump.edu.my/id/eprint/25080/2/66.Missing-Values%20Imputation%20Algorithms%20for%20Microarray%20Gene%20Expression%20Data.pdf http://umpir.ump.edu.my/id/eprint/25080/3/66.1%20Missing-values%20imputation%20algorithms%20for%20microarray%20gene%20expression%20data.pdf |
Gelijkaardige items
-
An Evaluation of Machine Learning Algorithms for Missing Values Imputation
door: Kohbalan, Moorthy, et al.
Gepubliceerd in: (2019) -
The importance of data classification using machine learning methods in microarray data
door: Jaber, Aws Naser, et al.
Gepubliceerd in: (2021) -
A model for gene selection and classification of gene expression data
door: Mohamad, Mohd Saberi, et al.
Gepubliceerd in: (2007) -
Systematic review of using machine learning in imputing missing values
door: Alabadla, Mustafa, et al.
Gepubliceerd in: (2022) -
Random forest for gene selection and microarray data classification /
door: Kohbalan Moorthy, 1987-, author, et al.
Gepubliceerd in: (2011)