Missing-values imputation algorithms for microarray gene expression data
In gene expression studies, missing values are a common problem with important consequences for the interpretation of the final data (Satija et al., Nat Biotechnol 33(5):495, 2015). Numerous bioinformatics examination tools are used for cancer prediction, including the data set matrix (Bailey et al....
Autores principales: | , , , , , |
---|---|
Otros Autores: | |
Formato: | Capítulo de libro |
Lenguaje: | English English English |
Publicado: |
Humana Press
2019
|
Materias: | |
Acceso en línea: | http://umpir.ump.edu.my/id/eprint/25080/1/978-1-4939-9442-7_12 http://umpir.ump.edu.my/id/eprint/25080/2/66.Missing-Values%20Imputation%20Algorithms%20for%20Microarray%20Gene%20Expression%20Data.pdf http://umpir.ump.edu.my/id/eprint/25080/3/66.1%20Missing-values%20imputation%20algorithms%20for%20microarray%20gene%20expression%20data.pdf |
Internet
http://umpir.ump.edu.my/id/eprint/25080/1/978-1-4939-9442-7_12http://umpir.ump.edu.my/id/eprint/25080/2/66.Missing-Values%20Imputation%20Algorithms%20for%20Microarray%20Gene%20Expression%20Data.pdf
http://umpir.ump.edu.my/id/eprint/25080/3/66.1%20Missing-values%20imputation%20algorithms%20for%20microarray%20gene%20expression%20data.pdf