Vehicle type classification using an enhanced sparse-filtered convolutional neural network with layer-skipping strategy

In this paper, a vehicle type classification approach is proposed by using an enhanced feature extraction technique based on Sparse-Filtered Convolutional Neural Network with Layer-Skipping strategy (SF-CNNLS). To extract rich and discriminant vehicle features, we introduce Three-Channels of SF-CNNL...

Повний опис

Бібліографічні деталі
Автори: Suryanti, Awang, Nik Mohamad Aizuddin, Nik Azmi, Rahman, Md. Arafatur
Формат: Стаття
Мова:English
Опубліковано: IEEE 2020
Предмети:
Онлайн доступ:http://umpir.ump.edu.my/id/eprint/30744/8/Vehicle%20Type%20Classification%20Using%20an%20Enhanced%20Sparse-Filtered%20Convolutional%20Neural%20Network%20with%20Layer-Skipping%20Strategy.pdf