In-The-Wild deepfake detection using adaptable CNN models with visual class activation mapping for improved accuracy

Deepfake technology has become increasingly sophisticated in recent years, making detecting fake images and videos challenging. This paper investigates the performance of adaptable convolutional neural network (CNN) models for detecting Deepfakes. In-the-wild OpenForensics dataset was used to evalua...

Ausführliche Beschreibung

Bibliographische Detailangaben
Hauptverfasser: Muhammad Salihin, Saealal, Mohd Zamri, Ibrahim, Mohd Ibrahim, Shapiai, Norasyikin, Fadilah
Format: Conference or Workshop Item
Sprache:English
English
Veröffentlicht: 2023
Schlagworte:
Online Zugang:http://umpir.ump.edu.my/id/eprint/38714/1/In-the-wild%20deepfake%20detection%20using%20adaptable%20CNN%20models.pdf
http://umpir.ump.edu.my/id/eprint/38714/2/In-The-Wild%20deepfake%20detection%20using%20adaptable%20CNN%20models%20with%20visual%20class%20activation%20mapping%20for%20improved%20accuracy_ABS.pdf