In-The-Wild deepfake detection using adaptable CNN models with visual class activation mapping for improved accuracy

Deepfake technology has become increasingly sophisticated in recent years, making detecting fake images and videos challenging. This paper investigates the performance of adaptable convolutional neural network (CNN) models for detecting Deepfakes. In-the-wild OpenForensics dataset was used to evalua...

詳細記述

書誌詳細
主要な著者: Muhammad Salihin, Saealal, Mohd Zamri, Ibrahim, Mohd Ibrahim, Shapiai, Norasyikin, Fadilah
フォーマット: Conference or Workshop Item
言語:English
English
出版事項: 2023
主題:
オンライン・アクセス:http://umpir.ump.edu.my/id/eprint/38714/1/In-the-wild%20deepfake%20detection%20using%20adaptable%20CNN%20models.pdf
http://umpir.ump.edu.my/id/eprint/38714/2/In-The-Wild%20deepfake%20detection%20using%20adaptable%20CNN%20models%20with%20visual%20class%20activation%20mapping%20for%20improved%20accuracy_ABS.pdf