Skip to content
VuFind
    • English
    • Deutsch
    • Español
    • Français
    • Italiano
    • 日本語
    • Nederlands
    • Português
    • Português (Brasil)
    • 中文(简体)
    • 中文(繁體)
    • Türkçe
    • עברית
    • Gaeilge
    • Cymraeg
    • Ελληνικά
    • Català
    • Euskara
    • Русский
    • Čeština
    • Suomi
    • Svenska
    • polski
    • Dansk
    • slovenščina
    • اللغة العربية
    • বাংলা
    • Galego
    • Tiếng Việt
    • Hrvatski
    • हिंदी
    • Հայերէն
    • Українська
    • Sámegiella
    • Монгол
Advanced
  • Intrusion detection system usi...
  • Cite this
  • Text this
  • Email this
  • Print
  • Export Record
    • Export to RefWorks
    • Export to EndNoteWeb
    • Export to EndNote
  • Permanent link
Intrusion detection system using autoencoder based deep neural network for SME cybersecurity

Intrusion detection system using autoencoder based deep neural network for SME cybersecurity

This paper proposes an intermediate solution using artificial intelligence to monitor any potential threat for SME, specifically in Malaysia. The proposed method uses Autoencoder based Deep Neural Network (AEDNN) trained with NSL-KDD dataset to efficiently detect possible cyber threats. This paper p...

Full description

Bibliographic Details
Main Authors: Khaizuran Aqhar, Ubaidillah, Syifak Izhar, Hisham, Ferda, Ernawan, Badshah, Gran, Suharto, Edy
Format: Conference or Workshop Item
Language:English
English
Published: Institute of Electrical and Electronics Engineers Inc. 2021
Subjects:
QA75 Electronic computers. Computer science
QA76 Computer software
T Technology (General)
TA Engineering (General). Civil engineering (General)
Online Access:http://umpir.ump.edu.my/id/eprint/42366/1/Intrusion%20detection%20system%20using%20autoencoder%20based.pdf
http://umpir.ump.edu.my/id/eprint/42366/2/Intrusion%20detection%20system%20using%20autoencoder%20based%20deep%20neural%20network%20for%20SME%20cybersecurity_ABS.pdf
  • Holdings
  • Description
  • Similar Items
  • Staff View

Internet

http://umpir.ump.edu.my/id/eprint/42366/1/Intrusion%20detection%20system%20using%20autoencoder%20based.pdf
http://umpir.ump.edu.my/id/eprint/42366/2/Intrusion%20detection%20system%20using%20autoencoder%20based%20deep%20neural%20network%20for%20SME%20cybersecurity_ABS.pdf

Similar Items

  • A survey on supervised machine learning in intrusion detection systems for Internet of Things
    by: Shakirah, Saidin, et al.
    Published: (2023)
  • An improved hiding information by modifying selected DWT coefficients in video steganography
    by: Ernawan, Ferda
    Published: (2023)
  • AuSR1 : Authentication and self-recovery using a new image inpainting technique with LSB shifting in fragile image watermarking
    by: Aminuddin, Afrig, et al.
    Published: (2022)
  • An efficient adaptive scaling factor for 4×4 DCT image watermarking
    by: Ernawan, Ferda, et al.
    Published: (2023)
  • A recent survey on image watermarking using scaling factor techniques for copyright protection
    by: Ernawan, Ferda, et al.
    Published: (2023)

Search Options

  • Search History
  • Advanced Search

Find More

  • Browse the Catalog
  • Browse Alphabetically
  • Explore Channels
  • Course Reserves
  • New Items

Need Help?

  • Search Tips
  • Ask a Librarian
  • FAQs