Enhancing SPARQL Query Generation for Knowledge Base Question Answering Systems by Learning to Correct Triplets
Generating SPARQL queries from natural language questions is challenging in Knowledge Base Question Answering (KBQA) systems. The current state-of-the-art models heavily rely on fine-tuning pretrained models such as T5. However, these methods still encounter critical issues such as triple-flip error...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2024-02-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/14/4/1521 |