Superior Eccentric Domination Polynomial
In this paper we introduce the superior eccentric domination polynomial $SED(G, φ) = β\sum_{ l=\gamma_{sed}(G)} |sed(G, l)|φ^{l}$ where |sed(G, l)| is the number of all distinct superior eccentric dominating sets with cardinality l and $\gamma_{sed}(G)$ is superior eccentric domination number. We fi...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Accademia Piceno Aprutina dei Velati
2023-03-01
|
Series: | Ratio Mathematica |
Subjects: | |
Online Access: | http://eiris.it/ojs/index.php/ratiomathematica/article/view/1082 |