Superior Eccentric Domination Polynomial

In this paper we introduce the superior eccentric domination polynomial $SED(G, φ) = β\sum_{ l=\gamma_{sed}(G)} |sed(G, l)|φ^{l}$ where |sed(G, l)| is the number of all distinct superior eccentric dominating sets with cardinality l and $\gamma_{sed}(G)$ is superior eccentric domination number. We fi...

Full description

Bibliographic Details
Main Authors: R Tejaskumar, A Mohamed Ismayil
Format: Article
Language:English
Published: Accademia Piceno Aprutina dei Velati 2023-03-01
Series:Ratio Mathematica
Subjects:
Online Access:http://eiris.it/ojs/index.php/ratiomathematica/article/view/1082