Superior Eccentric Domination Polynomial
In this paper we introduce the superior eccentric domination polynomial $SED(G, φ) = β\sum_{ l=\gamma_{sed}(G)} |sed(G, l)|φ^{l}$ where |sed(G, l)| is the number of all distinct superior eccentric dominating sets with cardinality l and $\gamma_{sed}(G)$ is superior eccentric domination number. We fi...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Accademia Piceno Aprutina dei Velati
2023-03-01
|
Series: | Ratio Mathematica |
Subjects: | |
Online Access: | http://eiris.it/ojs/index.php/ratiomathematica/article/view/1082 |
_version_ | 1797852421210243072 |
---|---|
author | R Tejaskumar A Mohamed Ismayil |
author_facet | R Tejaskumar A Mohamed Ismayil |
author_sort | R Tejaskumar |
collection | DOAJ |
description | In this paper we introduce the superior eccentric domination polynomial $SED(G, φ) = β\sum_{ l=\gamma_{sed}(G)} |sed(G, l)|φ^{l}$ where |sed(G, l)| is the number of all distinct superior eccentric dominating sets with cardinality l and $\gamma_{sed}(G)$ is superior eccentric domination number. We find SED(G, φ) for different standard graphs. Results are presented. |
first_indexed | 2024-04-09T19:32:49Z |
format | Article |
id | doaj.art-00b48de21e1f48cdaca7bc9208c5bf37 |
institution | Directory Open Access Journal |
issn | 1592-7415 2282-8214 |
language | English |
last_indexed | 2024-04-09T19:32:49Z |
publishDate | 2023-03-01 |
publisher | Accademia Piceno Aprutina dei Velati |
record_format | Article |
series | Ratio Mathematica |
spelling | doaj.art-00b48de21e1f48cdaca7bc9208c5bf372023-04-04T20:02:56ZengAccademia Piceno Aprutina dei VelatiRatio Mathematica1592-74152282-82142023-03-0146010.23755/rm.v46i0.1082784Superior Eccentric Domination PolynomialR Tejaskumar0A Mohamed Ismayil1(Jamal Mohamed College (Affiliated to Bharathidasan University), Tiruchirappalli)(Jamal Mohamed College (Affiliated to Bharathidasan University), Tiruchirappalli)In this paper we introduce the superior eccentric domination polynomial $SED(G, φ) = β\sum_{ l=\gamma_{sed}(G)} |sed(G, l)|φ^{l}$ where |sed(G, l)| is the number of all distinct superior eccentric dominating sets with cardinality l and $\gamma_{sed}(G)$ is superior eccentric domination number. We find SED(G, φ) for different standard graphs. Results are presented.http://eiris.it/ojs/index.php/ratiomathematica/article/view/1082superior distance, superior eccentricity, superior eccentric domination polynomial |
spellingShingle | R Tejaskumar A Mohamed Ismayil Superior Eccentric Domination Polynomial Ratio Mathematica superior distance, superior eccentricity, superior eccentric domination polynomial |
title | Superior Eccentric Domination Polynomial |
title_full | Superior Eccentric Domination Polynomial |
title_fullStr | Superior Eccentric Domination Polynomial |
title_full_unstemmed | Superior Eccentric Domination Polynomial |
title_short | Superior Eccentric Domination Polynomial |
title_sort | superior eccentric domination polynomial |
topic | superior distance, superior eccentricity, superior eccentric domination polynomial |
url | http://eiris.it/ojs/index.php/ratiomathematica/article/view/1082 |
work_keys_str_mv | AT rtejaskumar superioreccentricdominationpolynomial AT amohamedismayil superioreccentricdominationpolynomial |