Superior Eccentric Domination Polynomial

In this paper we introduce the superior eccentric domination polynomial $SED(G, φ) = β\sum_{ l=\gamma_{sed}(G)} |sed(G, l)|φ^{l}$ where |sed(G, l)| is the number of all distinct superior eccentric dominating sets with cardinality l and $\gamma_{sed}(G)$ is superior eccentric domination number. We fi...

Full description

Bibliographic Details
Main Authors: R Tejaskumar, A Mohamed Ismayil
Format: Article
Language:English
Published: Accademia Piceno Aprutina dei Velati 2023-03-01
Series:Ratio Mathematica
Subjects:
Online Access:http://eiris.it/ojs/index.php/ratiomathematica/article/view/1082
_version_ 1797852421210243072
author R Tejaskumar
A Mohamed Ismayil
author_facet R Tejaskumar
A Mohamed Ismayil
author_sort R Tejaskumar
collection DOAJ
description In this paper we introduce the superior eccentric domination polynomial $SED(G, φ) = β\sum_{ l=\gamma_{sed}(G)} |sed(G, l)|φ^{l}$ where |sed(G, l)| is the number of all distinct superior eccentric dominating sets with cardinality l and $\gamma_{sed}(G)$ is superior eccentric domination number. We find SED(G, φ) for different standard graphs. Results are presented.
first_indexed 2024-04-09T19:32:49Z
format Article
id doaj.art-00b48de21e1f48cdaca7bc9208c5bf37
institution Directory Open Access Journal
issn 1592-7415
2282-8214
language English
last_indexed 2024-04-09T19:32:49Z
publishDate 2023-03-01
publisher Accademia Piceno Aprutina dei Velati
record_format Article
series Ratio Mathematica
spelling doaj.art-00b48de21e1f48cdaca7bc9208c5bf372023-04-04T20:02:56ZengAccademia Piceno Aprutina dei VelatiRatio Mathematica1592-74152282-82142023-03-0146010.23755/rm.v46i0.1082784Superior Eccentric Domination PolynomialR Tejaskumar0A Mohamed Ismayil1(Jamal Mohamed College (Affiliated to Bharathidasan University), Tiruchirappalli)(Jamal Mohamed College (Affiliated to Bharathidasan University), Tiruchirappalli)In this paper we introduce the superior eccentric domination polynomial $SED(G, φ) = β\sum_{ l=\gamma_{sed}(G)} |sed(G, l)|φ^{l}$ where |sed(G, l)| is the number of all distinct superior eccentric dominating sets with cardinality l and $\gamma_{sed}(G)$ is superior eccentric domination number. We find SED(G, φ) for different standard graphs. Results are presented.http://eiris.it/ojs/index.php/ratiomathematica/article/view/1082superior distance, superior eccentricity, superior eccentric domination polynomial
spellingShingle R Tejaskumar
A Mohamed Ismayil
Superior Eccentric Domination Polynomial
Ratio Mathematica
superior distance, superior eccentricity, superior eccentric domination polynomial
title Superior Eccentric Domination Polynomial
title_full Superior Eccentric Domination Polynomial
title_fullStr Superior Eccentric Domination Polynomial
title_full_unstemmed Superior Eccentric Domination Polynomial
title_short Superior Eccentric Domination Polynomial
title_sort superior eccentric domination polynomial
topic superior distance, superior eccentricity, superior eccentric domination polynomial
url http://eiris.it/ojs/index.php/ratiomathematica/article/view/1082
work_keys_str_mv AT rtejaskumar superioreccentricdominationpolynomial
AT amohamedismayil superioreccentricdominationpolynomial