Effects of network topology on the performance of consensus and distributed learning of SVMs using ADMM

The Alternating Direction Method of Multipliers (ADMM) is a popular and promising distributed framework for solving large-scale machine learning problems. We consider decentralized consensus-based ADMM in which nodes may only communicate with one-hop neighbors. This may cause slow convergence. We in...

Бүрэн тодорхойлолт

Номзүйн дэлгэрэнгүй
Үндсэн зохиолчид: Shirin Tavara, Alexander Schliep
Формат: Өгүүллэг
Хэл сонгох:English
Хэвлэсэн: PeerJ Inc. 2021-03-01
Цуврал:PeerJ Computer Science
Нөхцлүүд:
Онлайн хандалт:https://peerj.com/articles/cs-397.pdf