Hybrid beluga whale optimization algorithm with multi-strategy for functions and engineering optimization problems
Abstract Beluga Whale Optimization (BWO) is a new metaheuristic algorithm that simulates the social behaviors of beluga whales swimming, foraging, and whale falling. Compared with other optimization algorithms, BWO shows certain advantages in solving unimodal and multimodal optimization problems. Ho...
Hlavní autoři: | Jiaxu Huang, Haiqing Hu |
---|---|
Médium: | Článek |
Jazyk: | English |
Vydáno: |
SpringerOpen
2024-01-01
|
Edice: | Journal of Big Data |
Témata: | |
On-line přístup: | https://doi.org/10.1186/s40537-023-00864-8 |
Podobné jednotky
-
AMBWO: An Augmented Multi-Strategy Beluga Whale Optimization for Numerical Optimization Problems
Autor: Guoping You, a další
Vydáno: (2024-11-01) -
An improved multi-strategy beluga whale optimization for global optimization problems
Autor: Hongmin Chen, a další
Vydáno: (2023-06-01) -
The Nelder–Mead Simplex Algorithm Is Sixty Years Old: New Convergence Results and Open Questions
Autor: Aurél Galántai
Vydáno: (2024-11-01) -
Optimal Configuration of Distributed Generation Based on an Improved Beluga Whale Optimization
Autor: Jifang Li, a další
Vydáno: (2024-01-01) -
A Stochastic Convergence Result for the Nelder–Mead Simplex Method
Autor: Aurél Galántai
Vydáno: (2023-04-01)