Hybrid beluga whale optimization algorithm with multi-strategy for functions and engineering optimization problems
Abstract Beluga Whale Optimization (BWO) is a new metaheuristic algorithm that simulates the social behaviors of beluga whales swimming, foraging, and whale falling. Compared with other optimization algorithms, BWO shows certain advantages in solving unimodal and multimodal optimization problems. Ho...
Auteurs principaux: | Jiaxu Huang, Haiqing Hu |
---|---|
Format: | Article |
Langue: | English |
Publié: |
SpringerOpen
2024-01-01
|
Collection: | Journal of Big Data |
Sujets: | |
Accès en ligne: | https://doi.org/10.1186/s40537-023-00864-8 |
Documents similaires
-
AMBWO: An Augmented Multi-Strategy Beluga Whale Optimization for Numerical Optimization Problems
par: Guoping You, et autres
Publié: (2024-11-01) -
An improved multi-strategy beluga whale optimization for global optimization problems
par: Hongmin Chen, et autres
Publié: (2023-06-01) -
The Nelder–Mead Simplex Algorithm Is Sixty Years Old: New Convergence Results and Open Questions
par: Aurél Galántai
Publié: (2024-11-01) -
Optimal Configuration of Distributed Generation Based on an Improved Beluga Whale Optimization
par: Jifang Li, et autres
Publié: (2024-01-01) -
A Stochastic Convergence Result for the Nelder–Mead Simplex Method
par: Aurél Galántai
Publié: (2023-04-01)