Hybrid beluga whale optimization algorithm with multi-strategy for functions and engineering optimization problems
Abstract Beluga Whale Optimization (BWO) is a new metaheuristic algorithm that simulates the social behaviors of beluga whales swimming, foraging, and whale falling. Compared with other optimization algorithms, BWO shows certain advantages in solving unimodal and multimodal optimization problems. Ho...
Asıl Yazarlar: | Jiaxu Huang, Haiqing Hu |
---|---|
Materyal Türü: | Makale |
Dil: | English |
Baskı/Yayın Bilgisi: |
SpringerOpen
2024-01-01
|
Seri Bilgileri: | Journal of Big Data |
Konular: | |
Online Erişim: | https://doi.org/10.1186/s40537-023-00864-8 |
Benzer Materyaller
-
AMBWO: An Augmented Multi-Strategy Beluga Whale Optimization for Numerical Optimization Problems
Yazar:: Guoping You, ve diğerleri
Baskı/Yayın Bilgisi: (2024-11-01) -
An improved multi-strategy beluga whale optimization for global optimization problems
Yazar:: Hongmin Chen, ve diğerleri
Baskı/Yayın Bilgisi: (2023-06-01) -
The Nelder–Mead Simplex Algorithm Is Sixty Years Old: New Convergence Results and Open Questions
Yazar:: Aurél Galántai
Baskı/Yayın Bilgisi: (2024-11-01) -
Optimal Configuration of Distributed Generation Based on an Improved Beluga Whale Optimization
Yazar:: Jifang Li, ve diğerleri
Baskı/Yayın Bilgisi: (2024-01-01) -
A Stochastic Convergence Result for the Nelder–Mead Simplex Method
Yazar:: Aurél Galántai
Baskı/Yayın Bilgisi: (2023-04-01)