Hybrid beluga whale optimization algorithm with multi-strategy for functions and engineering optimization problems
Abstract Beluga Whale Optimization (BWO) is a new metaheuristic algorithm that simulates the social behaviors of beluga whales swimming, foraging, and whale falling. Compared with other optimization algorithms, BWO shows certain advantages in solving unimodal and multimodal optimization problems. Ho...
Main Authors: | Jiaxu Huang, Haiqing Hu |
---|---|
格式: | Article |
語言: | English |
出版: |
SpringerOpen
2024-01-01
|
叢編: | Journal of Big Data |
主題: | |
在線閱讀: | https://doi.org/10.1186/s40537-023-00864-8 |
相似書籍
-
AMBWO: An Augmented Multi-Strategy Beluga Whale Optimization for Numerical Optimization Problems
由: Guoping You, et al.
出版: (2024-11-01) -
An improved multi-strategy beluga whale optimization for global optimization problems
由: Hongmin Chen, et al.
出版: (2023-06-01) -
The Nelder–Mead Simplex Algorithm Is Sixty Years Old: New Convergence Results and Open Questions
由: Aurél Galántai
出版: (2024-11-01) -
Optimal Configuration of Distributed Generation Based on an Improved Beluga Whale Optimization
由: Jifang Li, et al.
出版: (2024-01-01) -
A Stochastic Convergence Result for the Nelder–Mead Simplex Method
由: Aurél Galántai
出版: (2023-04-01)