EHR-Safe: generating high-fidelity and privacy-preserving synthetic electronic health records
Abstract Privacy concerns often arise as the key bottleneck for the sharing of data between consumers and data holders, particularly for sensitive data such as Electronic Health Records (EHR). This impedes the application of data analytics and ML-based innovations with tremendous potential. One prom...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Artículo |
Lenguaje: | English |
Publicado: |
Nature Portfolio
2023-08-01
|
Colección: | npj Digital Medicine |
Acceso en línea: | https://doi.org/10.1038/s41746-023-00888-7 |