Decentralized Sampled-Data Fuzzy Tracking Control for a Quadrotor UAV with Communication Delay

This study deals with the decentralized sampled-data fuzzy tracking control of a quadrotor unmanned aerial vehicle (UAV) considering the communication delay of the feedback signal. A decentralized Takagi–Sugeno (T–S) fuzzy approach is adopted to represent the quadrotor UAV as two subsystems: the pos...

Full description

Bibliographic Details
Main Authors: Yong Hoon Jang, Tae Joon Han, Han Sol Kim
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Drones
Subjects:
Online Access:https://www.mdpi.com/2504-446X/6/10/280
Description
Summary:This study deals with the decentralized sampled-data fuzzy tracking control of a quadrotor unmanned aerial vehicle (UAV) considering the communication delay of the feedback signal. A decentralized Takagi–Sugeno (T–S) fuzzy approach is adopted to represent the quadrotor UAV as two subsystems: the position control system and the attitude control system. Unlike most previous studies, a novel decentralized controller considering the communication delay for the position control system is proposed. In addition, to minimize the increase in computational complexity, the Lyapunov–Krasovskii functional (LKF) is configured as the only state required for each subsystem. The design conditions guaranteeing the tracking performance of the quadrotor UAV are derived as linear matrix inequalities (LMIs) that are numerically solved. Lastly, the validity of the proposed design method is verified by comparing the results through simulation examples with and without communication delay.
ISSN:2504-446X