Improving Variational Graph Autoencoders With Multi-Order Graph Convolutions

Variational Graph Autoencoders (VAGE) emerged as powerful graph representation learning methods with promising performance on graph analysis tasks. However, existing methods typically rely on Graph Convolutional Networks (GCN) to encode the attributes and topology of the original graph. This strateg...

Deskribapen osoa

Xehetasun bibliografikoak
Egile Nagusiak: Lining Yuan, Ping Jiang, Zhu Wen, Jionghui Li
Formatua: Artikulua
Hizkuntza:English
Argitaratua: IEEE 2024-01-01
Saila:IEEE Access
Gaiak:
Sarrera elektronikoa:https://ieeexplore.ieee.org/document/10477408/