Improving Variational Graph Autoencoders With Multi-Order Graph Convolutions
Variational Graph Autoencoders (VAGE) emerged as powerful graph representation learning methods with promising performance on graph analysis tasks. However, existing methods typically rely on Graph Convolutional Networks (GCN) to encode the attributes and topology of the original graph. This strateg...
Egile Nagusiak: | , , , |
---|---|
Formatua: | Artikulua |
Hizkuntza: | English |
Argitaratua: |
IEEE
2024-01-01
|
Saila: | IEEE Access |
Gaiak: | |
Sarrera elektronikoa: | https://ieeexplore.ieee.org/document/10477408/ |