Crystal twins: self-supervised learning for crystalline material property prediction
Abstract Machine learning (ML) models have been widely successful in the prediction of material properties. However, large labeled datasets required for training accurate ML models are elusive and computationally expensive to generate. Recent advances in Self-Supervised Learning (SSL) frameworks cap...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2022-11-01
|
Series: | npj Computational Materials |
Online Access: | https://doi.org/10.1038/s41524-022-00921-5 |